当前位置:首页 > 单片机 > 单片机
[导读]C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。 以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。

C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。 以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。

一. 500ms延时子程序

程序:

void delay500ms(void)

{

unsigned char i,j,k;

for(i=15;i>0;i--)

for(j=202;j>0;j--)

for(k=81;k>0;k--);

}

计算分析:

程序共有三层循环

一层循环n:R5*2 = 81*2 = 162us DJNZ 2us

二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us

三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us

循环外: 5us 子程序调用 2us + 子程序返回 2us + R7赋值 1us = 5us

延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms

计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5

二. 200ms延时子程序

程序:

void delay200ms(void)

{

unsigned char i,j,k;

for(i=5;i>0;i--)

for(j=132;j>0;j--)

for(k=150;k>0;k--);

}

三. 10ms延时子程序

程序:

void delay10ms(void)

{

unsigned char i,j,k;

for(i=5;i>0;i--)

for(j=4;j>0;j--)

for(k=248;k>0;k--);

}

四. 1s延时子程序

程序:

void delay1s(void)

{

unsigned char h,i,j,k;

for(h=5;h>0;h--)

for(i=4;i>0;i--)

for(j=116;j>0;j--)

for(k=214;k>0;k--);

}

关于单片机C语言的精确延时,网上很多都是大约给出延时值没有准确那值是多少,也就没有达到精确高的要求,而本函数克服了以上缺点,能够精确计数出要延时值且精确达到1us,本举例所用CPU为STC12C5412系列12倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。

共有三条延时函数说明如下:

函数调用分两级:一级是小于10US的延时,二级是大于10US的延时

//====================小于10US的【用1US级延时】====================

//----------微秒级延时---------

for(i=X;i>X;i--) 延时时间=(3+5*X)/12 提示(单位us, X不能大于255)

//================大于10US<小于21.9955Ms的可用【10US级延时函数】===========

void Delay10us(uchar Ms)

{

uchar data i;

for(;Ms>0;Ms--)

for(i=26;i>0;i--);

}

i=[(延时值-1.75)*12/Ms-15]/4

如想延时60US则 i=[(60-1.75)*12/6-15]/4=25.375≈26; 修改i的值=26,再调用上面的【10US级延时函数】Delay10us(6); 则就精确延时60US;

如果想延时64US可以用这二种函数组合来用: Delay10us(6); for(i=9;i>X;i--) 共延时64US

四. 1s延时子程序

程序:

void delay1s(void)

{

unsigned char h,i,j,k;

for(h=5;h>0;h--)

for(i=4;i>0;i--)

for(j=116;j>0;j--)

for(k=214;k>0;k--);

}

关于单片机C语言的精确延时,网上很多都是大约给出延时值没有准确那值是多少,也就没有达到精确高的要求,而本函数克服了以上缺点,能够精确计数出要延时值且精确达到1us,本举例所用CPU为STC12C5412系列12倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。

共有三条延时函数说明如下:

函数调用分两级:一级是小于10US的延时,二级是大于10US的延时

//====================小于10US的【用1US级延时】====================

//----------微秒级延时---------

for(i=X;i>X;i--) 延时时间=(3+5*X)/12 提示(单位us, X不能大于255)

//================大于10US<小于21.9955Ms的可用【10US级延时函数】===========

void Delay10us(uchar Ms)

{

uchar data i;

for(;Ms>0;Ms--)

for(i=26;i>0;i--);

}

i=[(延时值-1.75)*12/Ms-15]/4

如想延时60US则 i=[(60-1.75)*12/6-15]/4=25.375≈26; 修改i的值=26,再调用上面的【10US级延时函数】Delay10us(6); 则就精确延时60US;

如果想延时64US可以用这二种函数组合来用: Delay10us(6); for(i=9;i>X;i--) 共延时64US

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭