当前位置:首页 > 单片机 > 单片机
[导读]并行编程,最早的编程方法,功能最强大,但需要连接较多的引脚,通常需要12V~24V的高压ISP(In System Programmability) 在系统编程,简称为 串行下载IAP(In Application Programing) 在应用编程,BootLoader也是类似

并行编程,最早的编程方法,功能最强大,但需要连接较多的引脚,通常需要12V~24V的高压

ISP(In System Programmability) 在系统编程,简称为 串行下载

IAP(In Application Programing) 在应用编程,BootLoader也是类似的意思

1 ISP虽然利用了SPI接口(M64/M128除外),但只在复位时起作用,而且下载完成后合格的下载器会自动断开端口的连接,对正常工作时没有影响的( 在产品应用中,下载器一定是不会一直粘在上面的)。

2 虽然高压并行下载能修复任何熔丝位,但对于贴片封装来说是很不现实的,所以ISP接口是最常用的下载方式了

3 虽然IAP是一种新的升级方法,但IAP程序本身也是要先用高压并行下载或ISP来烧进芯片里面才行

所以,产品上一般都留有ISP接口插座,或更省位置的----留6个焊盘就行了

ISP的工作前提

1 芯片没有物理损坏

2 芯片的SPIEN熔丝位=0 使能ISP功能

3 芯片的RSTDISBL熔丝位=1 RESET引脚有效 (假如芯片有这个熔丝位)

4 线路正常---------接错线? 短路?

5 下载器正常-------特别要考虑 连线的接触不良问题

6 电源

运行时钟 ISP时钟(必须低于运行时钟的1/4)

4096Hz <1024Hz //很变态的用法,外接32.768KHz晶体+CKDIV8 ,不过AVRISP还是提供了603Hz这个速度了

//另一简易解决办法是 下载时在32.768KHz晶体并联一个1MHz晶体,双龙的下载线就配有一个8MHz的石英晶体

32768Hz <8192Hz

128KHz < 32KHz //内部RC128KHz

1.0MHz <250KHz //默认值(包括8MHz+CKDIV8),所以AVRISP的ISP速度多为230KHz

8.0MHz <2000KHz

16.0MHz <4000KHz

运行时钟不等于震荡器的频率,因为部分AVR芯片有系统时钟预分频器,可以对震荡器进行1~256分频

CKDIV8熔丝位决定CLKPS位的初始值。

若CKDIV8未编程,CLKPS位复位为“0000”;若CKDIV8 已编程,CLKPS 位复位为“0011”,给出启动时分频因子为8

AVRISP可提供的ISP时钟 921.6KHz,230.4KHz, 57.6KHz,28.8KHz,4.0KHz, 603Hz

STK500可提供的ISP时钟 1.845MHz,460.8KHz,115.2KHz,57.6KHz,4.0KHz,1206Hz

时钟设定 ISP方案

内部RC 选择合适的ISP速度

外部RC 接上合适的电阻和电容,选择合适的ISP速度。------补救: 外部时钟源接到XTAL1

外部RC 根本就没有什么意义,频率精度/稳定度不高,成本也没有降低,所以新的AVR芯片已经没有这个选项了。

各位网友要注意的是错误设定后补救方法

外部晶体 接上合适的晶体,选择合适的ISP速度。 ------补救: 外部时钟源接到XTAL1

外部时钟 接上合适的时钟源,选择合适的ISP速度。 ------补救: 外部时钟源接到XTAL1

外部时钟源可以是 外部(4MHz)有源晶体输出,其他MCU的XTAL2脚,各种方波振荡电路(NE555)输出等

大部分AVR芯片的ISP端口是 SCK,MOSI,MISO,RESET

而M64/M128的ISP端口是 SCK, PDI, PDO,RESET

在ISP模式下永远不能访问(修改)SPIEN位,这是AVR芯片的硬件保护

有独立RESET脚的M16/M32/M64/M128等,在ISP模式下根本就就不会令ISP无效,无论如何修改熔丝位,都能恢复正常。

M8/M48/M88/M168/Tiny系列有RSTDISBL熔丝位可以令导致RESET失效而令ISP无法工作外,其他情况都能恢复正常。

一般来说,只要满足ISP的工作前提,再把XTAL1接到一个4MHz有源晶体的输出,基本是万试万灵的。

不要忘记,并行高压编程的时钟信号也是从XTAL1导入方波信号的。

如果有源晶振的方法不行(除了ISPEN=0,RSTDISBL=0情况外),恐怕高压编程也未必能奏效。

扩展阅读:AVR单片机用哪个编译器好?

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭