当前位置:首页 > 单片机 > 单片机
[导读]晶振设计是单片机应用设计的重要环节之一,因此很有必要了解晶振电路的特点,组成以及如何选用相关电子元件。PIC单片机有四种振荡方式可供选择,振荡方式经配置寄存器CONFIG的F0SC1,F0SC0位加以选择,并在EPROM编程时

晶振设计是单片机应用设计的重要环节之一,因此很有必要了解晶振电路的特点,组成以及如何选用相关电子元件。

PIC单片机有四种振荡方式可供选择,振荡方式经配置寄存器CONFIG的F0SC1,F0SC0位加以选择,并在EPROM编程时写入。

晶体振荡器/陶瓷振荡器:

XT、LP、HS三种方式中,需一晶体或陶瓷谐振器连接到单片机的OSC1/CLKIN和OSC2/CLKOUT引脚上,以建立振荡,如图1所示。电阻RS常用来防止晶振被过分驱动。在晶体振荡下,电阻RF≈10MΩ。对于32KHZ以上的晶体振荡器,当VDD>4.5V时,建议C1=C2≈30PF。(C1:相位调节电容;C2:增益调节电容。)

表1:振荡器类型选择F0SC1F0SC0振荡方式

00低功耗振荡LP(Low Power)

01标准晶体振荡XT(Crystal/Resonator)

10高速晶体振荡HS(High Speed)

11阻容振荡RC(Resistor/Capacitor

常见问题分析

1:如何选择晶体?

对于一个高可靠性的系统设计,晶体的选择非常重要,尤其设计带有睡眠唤醒(往往用低电压以求低功耗)的系统。这是因为低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振。这一现象在上电复位时并不特别明显,原因时上电时电路有足够的扰动,很容易建立振荡。在睡眠唤醒时,电路的扰动要比上电时小得多,起振变得很不容易。在振荡回路中,晶体既不能过激励(容易振到高次谐波上)也不能欠激励(不容易起振)。晶体的选择至少必须考虑:谐振频点,负载电容,激励功率,温度特性,长期稳定性。

2:如何判断晶振是否被过分驱动?

电阻RS常用来防止晶振被过分驱动。过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的上升。可用一台示波器检测OSC输出脚,如果检测一非常清晰的正弦波,且正弦波的上限值和下限值都符合时钟输入需要,则晶振未被过分驱动;相反,如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动。这时就需要用电阻RS来防止晶振被过分驱动。判断电阻RS值大小的最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止。通过此办法就可以找到最接近的电阻RS值。

外部晶体振荡器电路:

PIC芯片可以使用已集成在片内的振荡器,亦可使用由TTL门电路构成的简单振荡器电路。当外接振荡器时,外部振荡信号)仅限于HS。XT。LP)从OSC1端输入,OSC2端开路。

图2所示的是典型的外部并行谐振振荡电路,应用晶体的基频来设计。74AS04反相器以来实现振荡器所需的180°相移,4.7KΩ的电阻用来提供负反馈给反相器,10KΩ的电位器用来提供偏压,从而使反相器74AS04工作在线性范围内。

3:如何选择电容C1,C2?

(1):因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。(2):在许可范围内,C1,C2值越低越好。C值偏大虽有利于振荡器的稳定,但将会增加起振时间。(3):应使C2值大于C1值,这样可使上电时,加快晶振起振。

 

 

 

 

图2

 

 

图3

 

 

图4

RC振荡:

RC振荡适合于对时间精度要求不高的低成本应用。RC振荡频率随着电源电压VDD,RC值及工作环境温度的变化而变化。同时由于工艺参数的差异,对不同芯片其振荡器频率将不同。另外,当外接电容CEXT值较小时,对振荡器频率的影响更大,当然,我们也应考虑电阻电容本身的容差对振荡器频率的影响。

图4所示的是RC振荡电路,如果REXT低于2.2KΩ,振荡器将处于不稳定工作状态,甚至停振。而REXT大于1M[时,振荡器又易受噪声、湿度、漏电流的干扰。因此,电阻REXT取值最好在3KΩ~100KΩ范围内。在不接外部电容时,振荡器仍可工作,但为了抗干扰及保证稳定性,建议接一20PF以上的电容。

PIC单片机片内有一4分频电路,从OSC1/CLKIN引脚输入或RC振荡器产生的振荡频率fOSC经4分频后从OSC2/CLKOUT引脚输出4分频信号,该信号可用于测试或作为其它逻辑电路的同步信号。

图3所示的是典型的外部串行谐振振荡电路,亦应用晶体的基频来设计。74AS04反相器用来提供振荡器所需的180°相移,330Ω的电阻用来提供负反馈,同时偏置电压.

扩展阅读:

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭