当前位置:首页 > 单片机 > 单片机
[导读]标准51单片机是12T的,就是说12个时钟周期(晶振周期,例如12M的,周期是1/12M,单位秒),机器做一个指令周期,刚好就是1/12M*12=1uS,常见指令例如_nop_就是一个周期,刚好1uS,其他的大多多于一个周期,乘除法更多。所以如果计算指令时间可以这样算。

标准51单片机是12T的,就是说12个时钟周期(晶振周期,例如12M的,周期是1/12M,单位秒),机器做一个指令周期,刚好就是1/12M*12=1uS,常见指令例如_nop_就是一个周期,刚好1uS,其他的大多多于一个周期,乘除法更多。所以如果计算指令时间可以这样算。
而现在很多51核的单片机工艺质量上去后,频率大大提高,增强型51有6T的,如果接12M的话,一个nop就只需要0.51uS,如果是STC的部分单片机1T的话,那只需要1/12uS。

单片机的晶振不是随便选,要看技术手册,看最高频率,看支持类型等等。一般12M,接串口的话11.0592M。如果是PIC,很多4M,8M。

不是越高越好,对很多不需要大量处理,只是控制的情况,为了增加可靠性,降低编程难度,降低功耗,往往可选用低频的,例如实时时钟的32768晶振。

故 计算nT单片机的指令周期公式为:

T = 1/晶振周期*n

例如: 使用12M晶振的1T单片机的指令周期为: T = 1 / 12 * 1 = 1 / 12 us

/***********************************************************************/

/*******************下面是单片机的几个周期的介绍****************/

/***********************************************************************/

(1)时钟周期 又名 振荡周期: 定义为时钟频率的倒数,可以理解为单片机外界晶振的倒数。在一个时钟周期内,CPU仅完成一个最基本的动作。对于某个单片机来讲,若采用了1MHZ的时钟频率,则时钟周期就是1us;若采用了4MHZ的时钟频率,则时钟周期就是250ns。由于时钟脉冲是CPU的基本工作脉冲,它控制着CPU的工作节奏。对于同一种单片机,时钟频率越高,单片机的工作速度就越快。我们使用的STC89C系列单片机的时钟范围约在1——40MHZ。

(2)状态周期:状态周期是时钟周期的两倍。

(3)机器周期:单片机的基本操作周期,在一个操作周期内,单片机完成一项基本操作,如取指令、存储器读写等。它由12个时钟周期(6个状态周期)组成。

(4)指令周期:它是指CPU执行一条指令所需要的时间。一般一个指令周期含有1——4个机器周期。

/*****************************************************************/

/************1T和12T单片机的编程所需要注意的************/

/****************************************************************/

定时器部分不用改。1T单片机的计时器是兼容传统12T单片机的。也就是说只是执行一般的指令会快12倍,但是它的定时器却是先进行12分频,再计时的,与原来的一样。只是用软件延时的话,就要改。

/****************************************************************/

/**************1T和12T单片机软件延时程序实例对比*******/

/*****************************************************************/

1.对于使用12M晶振的12T单片机,如:STC90C52RC

延时n个10us的程序:

[objc] view plain copy print?

 

void DelayXus(unsigned char n)

 

{

while( n-- )

{

_nop_();

_nop_();

}

}

 

2.而对于使用12M晶振的1T单片机,如:STC12C5206AD

延时n个1us的程序

[objc] view plain copy print?

void DelayXus(unsigned char n)

{

while( n-- )

{

_nop_();

_nop_();

}

}

对比可见,相同的程序在不同时钟周期的单片机下延时是不同的,所以当我们在不同时钟周期的单片机中移植程序的时候要注意软件延时需要修改成适当的程序,否则会造成不必要的错误。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭