当前位置:首页 > 单片机 > 单片机
[导读] 最近在用STM8的过程中需要用到一个频率检测的功能,还好STM8S207的定时器中自带有输入捕获功能,之前还想着用定时器计数方式来实现的,但既然人家提供了该功能,那就试试吧,由于硬件里面接的是PC1引脚就只看了Time

 最近在用STM8的过程中需要用到一个频率检测的功能,还好STM8S207的定时器中自带有输入捕获功能,之前还想着用定时器计数方式来实现的,但既然人家提供了该功能,那就试试吧,由于硬件里面接的是PC1引脚就只看了Timer1,其他的定时器应该也是类似的,看了资料之后发现STM8的输入捕获其实与STC12C5A60S2中的PCA捕获模式很类似,但是看资料没有后者清晰易懂。。。


在捕获模式中,基本上只用到了读进程,在STM8中有一个影子寄存器,但对于我们来说是看不到的,我们仅操作预装载寄存器即可。而且需要注意的是无论是计数器还是捕获/比较寄存器都是先读/写高8位,后读/写低8位数据。

在文档中给出了一个输入捕获模式的流程


[cpp] view plain copyTIM1_CCER1 &= (unsigned char)~0x02;//上升沿或者高电平触发

最后使能捕获功能,设置TIM1_CCER1寄存器的CC1E位=1,由于我们采用中断方式因此也将TIM1_IER寄存器的CC1IE位置1,允许中断请求。

完整的初始化代码如下

[cpp] view plain copyvoid signal_capture_Init(void)

{

TIM1_CNTRH = 0x00;//清零计数器高8位

TIM1_CNTRL = 0x00;//清零计数器低8位

TIM1_PSCRH = 0x00;//计数器时钟分频高8位

TIM1_PSCRL = 0x10;//计数器时钟分频低8位16分频

TIM1_CCER1 &= (unsigned char)~0x01;//清零TIM1_CCER1中的CC1E位,之后才可配置TIM1_CCMR1

TIM1_CCMR1 = 0x01;//配置TIM1_CCMR1中的CC1S位为1,CC1通道配置为输入,IC1映射到TI1FP1上

//无滤波器、无预分频器(捕获输入口上检测到的每一个边沿都触发一次捕获)

TIM1_CCER1 &= (unsigned char)~0x02;//上升沿或者高电平触发

TIM1_IER |= 0x02;//CC1IE=1,使能捕获/比较1中断

TIM1_CCER1 |= 0x01;//捕获使能

TIM1_CR1 |= 0x01;//使能定时/计数器

}

当发生一个输入捕获时,计数器的值被传送到TIM1_CCR1寄存器中,计时器的时钟源在程序中我们设置为16分频


分频过后计数器的频率为1MHz,这里采用分频主要是避免计数器溢出,这样同时也降低了精度,同时设置计数器的初值为0,计数器默认计数方式是向上计数,计到最大值后又从0开始计数,

中断处理代码如下

[cpp] view plain copy@far @interrupt void signal_capture_irq (void)

{

if(TIM1_SR1&0x02)

{

TIM1_SR1 &= (unsigned char)~0x02;//清除CC1IF标志

if(vsync_cap_data_old == 0x00)

{//第一次捕获中断来临

vsync_cap_data_old = TIM1_CCR1H;//先读取高8位数据

vsync_cap_data_old = (unsigned int)(vsync_cap_data_old<<8) + TIM1_CCR1L;//再读取低8位数据

}

else

{

//第二次捕获中断来临

vsync_cap_data_new = TIM1_CCR1H;//先读取高8位数据

vsync_cap_data_new = (unsigned int)(vsync_cap_data_new<<8) + TIM1_CCR1L;//再读取低8位数据

TIM1_IER &= (unsigned char)~0x02;//禁止通道1捕获/比较中断

TIM1_CR1 &= (unsigned char)~0x01;//停止计数器

if(vsync_cap_data_new > vsync_cap_data_old)

vsync_period = (vsync_cap_data_new - vsync_cap_data_old);

else

vsync_period = 0xFFFF + vsync_cap_data_new - vsync_cap_data_old;

vsync_cap_data_old = 0x00;

isCaptureOver = 1;

}

}

}

我们捕获两次中断计算时间差,

[cpp] view plain copyif(isCaptureOver)

{

//如果捕获完成则对数据进行处理

cmd_puts("period:");

cmd_hex((unsigned char)(vsync_period>>8));

cmd_hex((unsigned char)vsync_period);

TIM1_CNTRH = 0x00;//清零计数器高8位

TIM1_CNTRL = 0x00;//清零计数器低8位

TIM1_IER |= 0x02;//CC1IE=1,使能捕获/比较1中断

TIM1_CR1 |= 0x01;//使能定时/计数器

isCaptureOver = 0;

}

这里只从串口输出了周期,结果如下


可以看到周期在一个范围内波动我们取一个值0x79ED来计算,它所对应的频率f=1000000/0x79ED=32.0379Hz还是比较接近我们的实际输入频率30Hz,误差是大了些,可以通过代码继续改进

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭