当前位置:首页 > 电源 > 线性电源
[导读]采用无差拍电压空间矢量控制法来分析有源滤波器的滤波性能,给出该方法的控制策略,包括空间矢量脉宽调制(SVPWM)算法以及无差拍原理。该方法可以用来抑制和消除采样与计算方法的延时对控制精度的影响。Matlab仿真结果表明:SVPWM调制与无差拍控制结合用于有源滤波控制可以明显改进补偿的动态性能,提高滤波效果。实验结果证明该方法可行,且具有较好的实时性。

0 引言

有源电力滤波器(Active Power Filter,APF)作为一种用于动态抑制谐波的电力电子装置,其能够同时补偿多次谐波电流,能实时控制、自动跟踪非线性电流并加以控制,有较快的动态响应速度,且具有改善三相不平衡度的优点。对于有源滤波器谐波电流检测与补偿电流的发生是其极为关键的技术。

有源电力滤波器的电流控制一般采用PWM(PulseWidth Modulation)模式,目前常用的PWM 控制方式有滞环电流控制(Current Follow Pulse Width Modulation,CFPWM)、三角波电流控制(ΔPulse Width Modulation,ΔPWM)和电压空间矢量脉宽调制(Space Vector PulseWidth Modulation,SVPWM)三种技术。对于SVPWM 其控制方法的优点主要在于:提高逆变器直流侧电压的利用率,减小开关器件的开关频率以及减少谐波成分,而且此方法更易实现数字化。因此,逆变电路控制常采用此种方法。在APF的应用中,SVPWM常与滞环比较,PI调节器以及无差拍等结合应用。本文采用无差拍SVP-WM 控制策略,对APF 的电流进行补偿控制,以获得较好的动态补偿效果。

1 电力有源滤波器谐波检测方法

有源滤波器的谐波电流检测方法由时域和频域检测法构成。时域检测法主要分为:有功电流分离法和基于瞬时无功功率原理的p-q 法,ip-iq法以及d-q 法等。频域检测法主要有FFT法和谐波滤波器法等。

对于本文研究主要是采用ip-iq法来对电力有源滤波器进行分析研究,由图1可看出其原理。图中虚线框内为直流侧电压反馈控制部分,正余弦信号sin ωt 和-cos ωt 由锁相环PLL发生电路产生。其中sin ωt 与a相输入电压ua同相;逆变电路直流侧电压的给定值为Ucr,Ucf 是反馈值,将这两路信号之差经过PI调节器进行调节,所得到的Δip叠加到瞬时有功电流的直流分量中,经过运算得出指令电流ih 中所含基波有功电流,从而令APF直流侧与交流侧进行能量互换,从而将Uc调整到给定值。对于电力有源滤波器而言,滤波器逆变器直流侧信号与交流侧信号的能量交换是本文研究的关键。

 

 

2 无差拍控制简介

SVPWM 控制是用指令电流ic*(k) 代替补偿电流ic*(k+1)使k 时刻的补偿电流在k+1时刻完全跟踪上指令电流,但这样会存在一拍的滞后。而基于SVPWM的无差拍控制则在k 时刻预测出k+1时刻的指令电流值,并以此代替补偿电流,最后通过SVPWM控制算法产生PWM 脉冲信号以控制变流器开关器件的通断,从而使每一时刻输出的补偿电流等于其指令电流,实现了实时控制。无差拍SVPWM的控制原理如图2所示。

 

 

 

式中:ts为采样周期;ic*(k+1)和u*(k+1)分别为k+1采样时刻有源电力滤波器的指令电流与参考电压。

为了能够在k 时刻得到u*(k+1),须在采样时刻的基础上提前预测出ic*(k+1)。再算出u*(k+1),最后通过SVPWM方法得到合适的有源滤波器逆变器脉冲控制信号,从而达到电流跟踪控制目的。

3 SVPWM原理与实现

3.1 逆变器矢量的定义

图3为并联型APF拓扑结构图,其3个桥臂分别定义为a,b,c.

 

 

定义开关变量用Sa、Sb、Sc来表示,用“1”表示同一桥臂的上桥臂开关导通,用“0”表示同一桥臂的下桥臂开关导通,如“100”表示a相的上桥臂导通、b相的下桥臂导通、c相的下桥臂导通。则三相电压可表示为:

 

 

根据开关器件的导通状态可得出8种开关状态,其在在α-β坐标系上的分布如图4所示。

 

 

3.2 SVPWM算法实现

(1)参考矢量Uref扇区的判定

图4把6种有效状态所围成的6边形分成6个扇区,分别称为I、Ⅱ、Ⅲ、Ⅳ、Ⅴ和Ⅵ。

通过α-β坐标系中的Uα与Uβ进行运算得出Uref所在扇区N 的值。通过3 2 的变换等式如式(6)所示。

 

 

由式(6)得出,矢量Uref可通过Uα和Uβ来表示。定义变量A,B,C:若U1>0,A=1 否则A=0;若U2>0,B=1,否则B=0;若U3>0,C=1,否则C=0.通过将A,B,C 的数值带入到式N=A+2B+4C 中得到所对应的扇区。

(2)参考矢量Uref的基本矢量作用时间计算

在图4中,设参考矢量Uref位于六边形扇区Ⅲ中,相邻的矢量为U1(100)、U2(110),设t1与t2分别为其作用时间,T1为SVPWM的调制周期1.通过伏秒平衡原则,可以得出:

 

[!--empirenews.page--]

 

在实际情况中,系统中的电流有可能发生较大的突变现象,使得数字电流环中的参考电压矢量超出变流器输出的最大电压,因此判断其是否饱和是确保合适的空间矢量调制方法。若t1+t2≤Ts,则无需纠正,有:

 

 

式(12)中的T0为零矢量的作用时间。

(3)变流器触发方案

选择适当的空间基本矢量作用时间切换点调制方案是脉冲产生的前提条件。本文采用对称七段式PWM方式,即以零矢量000作为开关周期的起始与结束,111为中间矢量,在实际系统中应当尽可能地减少开关状态变化时所引起的开关损耗,因此每一个开关状态都的遵守一个原则:每次开关状态切换时只有一个开关运作。

调制顺序为:000→100→110→111→110→100→000,图5为调制后的变流器触发脉冲信号。

 

 

4 基于Matlab 的仿真

通过Matlab 仿真,对无差拍SVPWM 控制策略的APF 建立仿真模型,仿真模型参数设计为:电抗L 为2 mH,线电压380 V的三相交流电源,APF直流侧电压为800 V,负载为阻性负载与三相不控整流桥,其阻值为5 Ω,开关频率8 kHz.电力有源滤波器Matlab 仿真如图6所示,其仿真波形如图7所示。

 

 

 

 

仿真结果表明,a相电流电流通过APF谐波补偿后基本保持正弦。由此得出,APF具有较好的电流跟踪与补偿的效果。

5 实验结果

在APF实验中,采用DSP来实现无差拍SVPWM 控制策略,并将其应用于非线性负载中进行谐波补偿。实验设计参数:电源为线电压为380 V 的交流电,交流侧为电阻为5 mΩ,连接电抗2 mH,非线性负载侧含有阻值5 Ω的电阻负载,在实验系统中测得滤波器直流侧电压为800 V,采样频率为10 kHz.图8为APF的实验波形。

 

 

通过实验波形与频谱图分析可以得出,当APF接入系统后,由图8(c)可以看出无差拍SVPWM控制算法能够取得较好的谐波电流跟踪和补偿的能力。由图8(d)APF投入后电流的THD由26.7%变为5.6%,更进一步证明了无差拍SVPWM 控制策略拥有较好的电流跟踪效果。

6 结论

本文采用无差拍SVPWM 作为滤波器的控制策略进行研究,通过预测算法预测出补偿点流的参考值,而后再计算得出下一时刻的输出电压参考值,最后通过空间电压矢量调制得出PWM 脉冲信号,实现补偿电流得到较好跟踪控制的目标。通过仿真与实验该方法的可行性。仿真与实验表明此方法能够实现对系统补偿电流的跟踪控制,而且还具有良好的动态补偿性能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭