当前位置:首页 > 电源 > 线性电源
[导读]引言相对较低容量电池的充电、或后备和“保持运作型”电池的维护充电而言,线性拓扑电池充电器因其紧凑的占板面积、简单和可负担能力而受到重视。即使如此,能接

引言

相对较低容量电池的充电、或后备和“保持运作型”电池的维护充电而言,线性拓扑电池充电器因其紧凑的占板面积、简单和可负担能力而受到重视。即使如此,能接受10V或更高输入电压的线性充电器却十分缺乏,因而导致无法满足许多工业和汽车系统的要求。

有些开关模式解决方案能接受高输入电压,而开关拓扑可提供电流和效率方面的优势,但是它们在复杂性和解决方案占板面积上却付出了重大的代价。最后的结果是,对于“保持运作型”系统或后备电池充电器中必需的低电流来说,开关模式解决方案往往就是“杀鸡用牛刀”了。此外,适合高达60V之汽车和工业应用的解决方案实在少之又少。

LTC4079是一款宽输入范围独立型充电器,其可由任何2.7V至高达60V的DC电源来供电,因而能够直接采用12V和24V DC系统电源轨或甚至48V工业电源实施恒定电流/恒定电压(CC/CV)充电。其简单与坚固性的组合使之能够轻而易举地满足在这些环境中“持续运作型”系统或后备电池解决方案的充电需求。图1为简单锂离子电池充电器的实例。

 

 

图 1:用于两节后备锂离子电池的宽范围线性独立型充电器

坚韧性与灵活性的巧妙组合

LTC4079的充电电压可采用电阻来设置,这与其面向实际用途的宽输入电压范围之灵活性相匹配。该电路可在采用极小输入和输出电容的情况下于整个输入电压范围内保持稳定。

在PROG引脚上采用单电阻能设置充电电流至高达250mA,并可根据PROG电压来监视充电电流。充电终止功能是我们熟悉的:基于定时器、利用TIMER引脚电容进行设置、或通过把TIMER引脚连接至地以实施C/10电流检测。CHRG状态引脚利用任一种方法发出充电终止指示信号。另外,定时器电容还用于失效电池检测。

利用NTC和NTCBIAS检测网络以构成完整的充电器电路可实现适宜温度充电。LTC4079的耐热性能增强型3mm x 3mm DFN封装包括一个内部传输元件,从而造就了一款紧凑和全面的解决方案。在图2给出的完整电路显示了其紧凑的占板面积。

 

 

图 2:完整演示板电路占板面积的实际尺寸

创新型调节

相比于传统的充电器,LTC4079进行了多项改进,其拥有几种与众不同的充电电流调节方法。首先,对于宽范围但电流受限或高阻抗源,输入电压可调节至比电池电压至少高160mV (VIN(MIN)≥VBAT+ 160mV)。减小充电电流以避免输入电压骤降至该数值以下,从而实现充电电流的最大化。利用该内部调节方案无需外部组件。图3示出了采用一块太阳能电池板对一个12V密封铅酸电池组进行温度补偿型浮动充电的实例,但输入电压与电池电压的任意组合都是可以的。

当能量收集器或小型太阳能电池板等非常低功率电源不能连续提供 10mA 最小充电电流时,LTC4079 的差分电压调节是特别有用。在面对欠压闭锁 (UVLO)时,该特性允许充电操作在可能的情况下继续进行,而不是随意地停止充电,这将更有效地采用可用的输入功率。

为了获得一个更具体的输入电压调节设定点,使能输入引脚 EN 可伺服至一个电阻分压器。当输入电压达到该设定点时,充电电流减小以避免给电源施加任何进一步的负载。这样,使能输入可用于设定一个针对某种给定电源的最小工作电压。

 

 

图 3:利用输入电压调节来防止弱的输入源遭受过载

最后一种电流调节方法 (即“热调节”) 对于单片式器件通常是很重要,但对于线性稳压器来说则应强制。在较为严酷的环境中或在高的 VIN/VBAT 比条件下 (此时充电电压远远低于标称输入电压),这种方法尤其有用。充电电流将减小,直到芯片结温降至低于 118°C 为止。参考图 3 所示具有输入电压调节功能的电路实例,其可避免弱的输入源遭受过载。

低的静态吸收电流

在充电时,LTC4079 仅消耗 4μA,因而使得从电源至电池的能量传输最大限度地提高。当把能量从一个容量较高的电池转移至一个较小的后备电池时,这一点尤其重要。在电池后备系统中,电压反馈分压器从电路中剔除以进一步减轻电池的负载,从而把停机电流减小至10nA (典型值),并确保在整个电池系统的长期备用或贮存期间不会发生意外的容量衰减。这使得 LTC4079 尤其适合那些具有嵌入式充电能力且只需低维护或不需维护的“设定后便不需再过问”之设计。

总结

LTC4079 的紧凑和全面型设计非常适合于维护及“保持运作型”的电池充电解决方案,但其并不局限于此类应用。该器件丰富的特性使之能够容易地适应工业、汽车、太阳能、医疗、军事 / 航天和消费电子产品领域中任何数量的充电任务。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭