当前位置:首页 > 电源 > 线性电源
[导读]快充及电源适配器通常采用传统的反激变换器结构,随着快充及PD适配器的体积进一步减小、功率密度进一步提高以及对于高效率的要求,传统的硬开关反激变换器技术受到很多限制。采用软开关技术工作在更高的频率,可以降低开关损耗提高效率,减小变压器及电容的尺寸降低电源体积,同时改善EMI性能,从而满足系统设计的要求,特别适合于采用超结结构的高压功率MOSFET或高压GaN器件的高功率密度快充及电源适配器。

1、前言

快充及电源适配器通常采用传统的反激变换器结构,随着快充及PD适配器的体积进一步减小、功率密度进一步提高以及对于高效率的要求,传统的硬开关反激变换器技术受到很多限制。采用软开关技术工作在更高的频率,可以降低开关损耗提高效率,减小变压器及电容的尺寸降低电源体积,同时改善EMI性能,从而满足系统设计的要求,特别适合于采用超结结构的高压功率MOSFET或高压GaN器件的高功率密度快充及电源适配器。

传统的硬开关反激变换器功率开关管电压、电流应力大,变压器的漏感引起电压尖峰,必须采用无源RCD吸收电路进行箝位限制,RCD吸收电路的电阻R产生额外的功率损耗,降低系统效率,如图1所示。

如果将RCD吸收电路的电阻R去掉,同时将二极管换成功率MOSFET,这样就变成了有源箝位反激变换器,通过磁化曲线在第一、第三象限交替工作,将吸收电路的电容Cc吸收的电压尖峰能量,回馈到输入电压,从而实现系统的正常工作。

图1:传统的硬开关反激变换器

图2:有源箝位反激变换器

2、有源箝位反激变换器工作原理

非连续模式DCM有源箝位反激变换器电路结构及相关波形如图2、图3所示,图中的各个元件定义如下。

Lm:变压器初级激磁电感

Lr:变压器初级漏感

Lp:变压器初级总电感,Lp=Lm+Lr

n:变压器初级和次级的匝比,n=Np/Ns

Q1:主功率开关管,DQ1、CQ1为Q1寄生体二极管和寄生输出电容

Qc:箝位开关管,DQc、CQc为Qc寄生体二极管和寄生输出电容

Do:次级输出整流二极管

Cc:箝位电容

Cr:CQ1、CQc以及其它杂散谐振电容Cto总和,Cr=CQ1+CQc+Cto

Cc1:Cc1=Cc+CQ1+Cto

Vsw:Q1的D、S两端电压

Vin:输入直流电压

Vo:输出直流电压

VC:箝位电容电压

每个开关周期根据其工作状态可以分为8个工作模式,各个工作模式的状态及等效电路图分别讨论如下。

图3:有源箝位反激变换器波形(非连续模式DCM)

‍(1)模式1:t0-t‍1

在t0时刻,Q1处于导通状态,Qc、Do保持关断状态。Lp两端所加的电压为Vin,Lp激磁,其电流从0开始,随着时间线性上升。

 

图4:模式1(Q1导通,Qc、Do关断)

(2)模式2:t1-t‍2

在t1时刻,Q1关断,Qc、Do保持关断状态。Q1关断后,Lp和Cr谐振,激磁电流对CQ1充电,对CQc放电,Vsw电压谐振上升。

图5:模式2(Q1、Qc、Do关断)

在t1-t2中间某一时刻tm,对应的Vsw电压为Vin:① t1-tm期间,Lp所加电压为正,其电流谐振上升,但是上升斜率变得缓慢。② tm-t2期间,从tm时刻开始,Lp所加电压为负,其电流谐振下降。

(3)模式3:t‍2-t‍3

在t2‍时刻,Vsw的电压谐振上升到Vin+VC,VC=n•Vo,二极管DQc自然导通,Q1、Do保持关断状态。DQc导通后,Lp和Cc1谐振,激磁电流同时对Cc、CQ1充电,Vsw电压、VC电压谐振上升,Lp的电流继续谐振下降。

图6:模式3(DQc导通,Q1、Do关断)

在t2-t3期间任一时刻,开通Q‍c,由于DQc处于导通状态,其两端电压为0,因此Qc的开通就是零电压开通ZVS。

图7:QQc零电压开通ZVS

初级绕组电压:

VLm=VC•Lm/(Lr+Lm)

此过程中,VLm电压小于n•Vo,Do不导通。

(4)模式4:t3‍-t‍4

在t3时刻,VLm电压谐振上升到n•Vo时,Do导通,Qc保持导通状态,Q1保持关断状态。Do导通后,Lm两端电压箝位在n•Vo,Lm储存能量转移到次级绕组,向输出负载传送,其电流线性下降;同时,Lr和Cc1谐振,Lr的电流同时对Cc、CQ1充电,Vsw电压、VC电压继续谐振上升,Lr的电流谐振下降。

图8‍:模式4(Q‍Qc、Do导通,Q1关断)

(5)模式5:t4-t‍5

在t4时刻,Lr的电流谐振下降到0,Do、Qc保持导通状态,Q1保持关断状态。Lr的电流下降到0后,Lr和Cc1反向谐振,就是Cc对Lr反向激磁,Cc、CQ1放电,Vsw电压、VC电压谐振下降,Lr的电流从0开始反向谐振上升,到达反向的最大值后继续谐振,其反向电流的绝对值下降,而Lm继续向输出负载释放能量,电流保持线性下降。‍

图9:模式5(QQc、Do导通,Q1关断)

(6)模式6:t5-t‍6

在t5时刻,Lm的电流降低为0,Lm电感储存能量全部释放完毕,Do自然关断,Qc保持导通状态,Q1保持关断状态。Do关断后,输出反射电压n•Vo断开,此时,Lm又重新串联进入到谐振回路,Lp和Cc1谐振,Vc电压反向加在Lp,Cc放电对Lp反向激磁,Lm的电流过0后和Lr一起继续反向增加。

图10:模式6(QQc导通,Q1、Do关断)

在Do关断瞬间,Lr的电流有一个高频振荡换流的过程,在这个过程中,Lr的电流快速下降到几乎为0、和Lm电流相等的过程,其中一部分能量转送到输出负载,另一部分能量转移到Lm。

(7)模式7:t6-t‍7

在t6时刻,关断Qc,Do、Q1保持关断状态。Qc关断后,Lp和Cr谐振,Lp的电流对CQc充电,对CQ1放电。‍

图11:模式7(QQc、Q1、Do关断)

在t6‍-t7‍中间某一时刻tn,对应的Vsw电压为Vin:①t6-tn期间,Lp所加电压为负,其电流谐振下降,其反向电流的绝对值进一步增加。②tn-t7期间,从tn时刻开始,Lp所加电压为正,其电流谐振上升,其反向电流的绝对值降低。

(8)模式8:t7‍-t0‍‍

在t7时刻,CQ1放电到0,Vsw电压为0,D1自然导通续流,将Vsw电压箝位到0,Do、Qc保持关断状态。D1导通后,Lp两端所加的电压为Vin,Lp的电流从负值线性上升,其电流绝对值进一步降低,直到降低为0,完成一个开关周期。然后,Lp的电流继续正向激磁,从0开始正向线性上升,开始下一个开关周期。

图12:模式8(D1导通,Q1、Do关断)

在t7-t0期间任一时刻,开通Q1,由于D1‍处于导通状态,其两端电压为0,因此Q1的开通就是零电压开通ZVS。

图13:Q1零电压开通ZVS

‍ 3、 说明讨论

(1)有源箝位软开关反激变换器工作于非连续模式DCM,因此每个周期初级激磁电感的电流要到0。

主功率开关管Q1和箝位开关管Qc配置成半桥的电路结构,只有当Q1(Qc)的寄生体二极管先导通,然后再开通Q1(Qc),才能实现零电压软开关ZVS。

(2)从工作原理可以看到,当Q1关断后开始谐振转换时,谐振环每次只换一个元件,依次的顺序为:

Lp/Cr-->Lp/Cc1-->Lr/Cc1-->Lp/Cc1-->Lp/Cr

(3)只要Lp加正电压,起始电流为正,其电流线性增加;起始电流为负,其电流绝对值线性降低;只要Lp上加负电压,起始电流为正,其电流线性下降;起始电流为负,其电流绝对值线性增加。Lp所加的电压有发生正、负转换时,Lp电流的斜率也发生改化。

(4)Lp的负电流的能量并没有传输到输出,它只是为了实现Q1的零电压关断,因此,Lp的负电流形成环流,在变压器中产生铜损、铁(磁)损,同时在回路的电阻中产生导通损耗,影响系统的效率,因此要精确的控制Lp的负电流的大小。

在t7时刻,当Vsw电压为0时,若Lp的电流也为0,其效率最高,实际上这样的条件很难精确的控制。

(5)由于Cc>>CQ1+Cto,因此,Cc1==Cc。相对于开关周期,t1-t2、t2-t3时间非常短。Cc电容足够大,其纹波可以忽略,因此,t1-t6期间,Vsw的电压可以看成基本不变的平台,如下图所示,图中还标出了开关元件导通的顺序、谐振元件依次改变的顺序。

输出二极管换成MOSFET,则为次级同步整流。为了方便驱动,可以将同步MOSFET放在低端,如图所示。

图14:‍次级同步整流

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

该SiP系列现已增至三款器件,均使用了Transphorm的SuperGaN,为支持新一代适配器和充电器拓展了功率等级

关键字: 氮化镓 适配器 充电器

随着科技的快速发展,电子设备已经深入到我们生活的方方面面,无论是智能手机、笔记本电脑还是智能家居设备,它们都需要稳定可靠的电源供应来保证其正常运行。在这个背景下,开关电源适配器作为电源管理的重要组件,发挥着不可或缺的作用...

关键字: 开关电源 电源适配器

开关电源适配器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 适配器 电源 开关电源 充电器

在这篇文章中,小编将对开关电源适配器的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 适配器 电源 开关电源

一直以来,开关电源适配器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来开关电源适配器的相关介绍,详细内容请看下文。

关键字: 适配器 电源 开关电源

开关电源适配器作为电子设备的重要组成部分,为各类设备提供稳定、高效的电源供应。然而,在某些情况下,我们可能需要拆解开关电源适配器,例如进行维修、更换部件或进行学术研究等。本文将详细介绍开关电源适配器的拆解步骤,帮助读者了...

关键字: 开关电源 适配器 电子设备

开关电源适配器作为电子设备的重要组件,其性能与参数直接关联到设备的稳定运行和能源利用效率。了解和掌握开关电源适配器的各项参数,对于正确选择和使用适配器,以及优化设备性能具有重要意义。本文将详细解析开关电源适配器的主要参数...

关键字: 开关电源 适配器 直流电压

开关电源适配器,作为电子设备不可或缺的一部分,其作用举足轻重。它不仅为设备提供稳定、可靠的电源,还确保了设备在复杂多变的电源环境下能够正常运行。本文将对开关电源适配器的作用进行深入的探讨,以期帮助读者更好地理解其重要性。

关键字: 开关电源 适配器 控制电路

在电子设备日益普及的今天,电源适配器和充电器成为了我们日常生活中不可或缺的一部分。它们的主要功能都是为电子设备提供电源,但在实际使用中,开关电源适配器和充电器之间却存在着一些明显的区别。本文将从定义、工作原理、使用场景、...

关键字: 电子设备 电源适配器 充电器

随着电子技术的快速发展,电源适配器作为连接交流电网与各种便携式和固定式电子设备的重要桥梁,其设计和性能对设备的稳定运行起着至关重要的作用。在众多类型的电源适配器中,开关电源适配器因其高效率和小型化的特点逐渐成为主流趋势。...

关键字: 开关电源适配器 电源适配器
关闭
关闭