当前位置:首页 > 显示光电 > 电源-LED驱动
[导读]改善量产时肖特基二极管出现泄漏故障的问题,一种方法是将肖特基二极管的额定电压从100 V增加到120 V,但系统温度较高时,漏电流依然是个问题。

配置背光的一种标准方法是使用两个分立式器件: 一个采用DPAK封装的100 V MOSFET,以及一个同样采用DPAK封装的100 V肖特基二极管。LED背光单元中,肖特基二极管的高漏电流可能会造成一些问题,尤其在较高温度下。有些人曾遇到量产时肖特基二极管出现泄漏故障的问题。改善泄漏故障的一种方法是将肖特基二极管的额定电压从100 V增加到120 V,但系统温度较高时,漏电流依然是个问题。

飞兆半导体的设计团队开发了一种替代方法,即采用100 V BoostPak解决方案。BoostPak系列(图1)在单封装内集成两个器件: 一个100 V MOSFET和一个150 V NP二极管。

 

 

图1. BoostPak在单封装内集成100 V MOSFET和150 V NP二极管

BoostPak系列采用5引脚DPAK单封装。N沟道MOSFET针对最大程度降低导通电阻并保持出色的开关性能而设计。NP二极管为超快速整流器,带低正向导通压降,具有出色的开关性能。相比肖特基二极管,它具有低得多的漏电流,在高温应用中提供更高的系统可靠性。

相比双分立器件解决方案,BoostPak方案的尺寸更小,可节省多达20mm2的PCB空间。使用单封装而非两个封装还意味着装配更方便、系统成本更低。

BoostPak系列提供两种版本,一种额定输出功率为25 W,另一种额定值为40 W.表1列出详细信息。

 

 

表1. BoostPak装配规格

更高温度下的性能更佳

我们想要知道NP二极管的漏电流到底有多低,因此我们进行了一些测试。测试结果如图2所示。

 

 

图2:二极管漏电流比较

与100 V、5A肖特基二极管相比,150 V、5 A BoostPak系列NP二极管在所有条件下的额定漏电流值低得多,但两者在高温下差别极大。随着温度上升,肖特基二极管的漏电流以极快的速度增加,而相比之下NP二极管的漏电流依然较低。

BoostPak系列的NP二极管采用绝佳的生命周期控制工艺制成,以实现极快速的反向恢复时间和合理的正向压降(VF(典型值): 0.9 V,条件为 IF=5 A、TJ=100 度)

 

 

图3:对反向恢复时间进行了比较[!--empirenews.page--]

实际设计

下一步,我们将验证BoostPak系列能够在实际设计中限制漏电流,因此我们开发了一款评估板,并在多种条件下进行测试。图4为基本设计,BoostPak系列高亮显示。

 

 

图4. LED背光中的BoostPak

该设计针对35 W升压拓扑,使用连续电流模式(CCM)操作。输入电压范围为20.4 V至27.6 V,采用单通道直流输出,恒定电流值为640 mA (55 V)。我们采用BoostPak系列的FDD8500N10LD版本。

在CCM操作期间,二极管反向恢复电流增加MOSFET的导通损耗。NP二极管提供低反向恢复电流,对MOSFET的影响更小。

测试温度与EMI

我们在设计BoostPak产品时,牢记两个目标。首先,我们希望将器件壳的工作温度保持在65℃以下。其次,我们希望满足电磁干扰(EMI)的通用规格,将EMI保持在CISPR22 B类标准规定的限值以下。

我们测量了饱和温度。如表2所示,在24 V输入电压(VIN)的情况下,BoostPak系列温度保持在61.5℃,低于65℃的目标。

 

 

表2. VOUT= 55V (35W)时的测试结果

接着,我们通过检查五串LED负载时的辐射量,测试EMI.图5显示VIN为24V时的结果。

 

 

图5. 辐射量: VIN= 24 V

在30 MHz至1000 MHz的子频率范围内,辐射量远低于CISPR22 B类的额定限值。

结语

测试结果显示飞兆半导体的BoostPak系列(以单个100 V BoostPak替代100 V MOSFET和100 V肖特基二极管)低漏电流二极管满足工作温度下必须的性能和EMI要求。同时,使用BoostPak系列可让设计的尺寸更小、更紧凑,并且更易于组装。在成本竞争型应用中,如屏幕尺寸小于40英寸的LED电视机,这些优势可让产品脱颖而出。BoostPak方法还可节省其他应用的成本,比如LED照明系统和升压/降压操作DC-DC转换器。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭