当前位置:首页 > 显示光电 > 电源-LED驱动
[导读]当高功率 LED (例如:10A 至 40A 投影机 LED) 所需的电流使异步转换器中的组件承受过应力时,通常采用同步降压型转换器驱动器。同步整流可限制由于转换器开关中的高电流所引起的功率损耗和温升。同步整流在高功率升压型 LED 驱动器中能够提供相同的好处,即使对于 1A 至 3A LED 也不例外。与降压型转换器不同的是,升压型转换器的峰值开关电流可能会远远高于 LED 电流,特别是在输出功率很高和输入电压很低的时候。

当高功率 LED (例如:10A 至 40A 投影机 LED) 所需的电流使异步转换器中的组件承受过应力时,通常采用同步降压型转换器驱动器。同步整流可限制由于转换器开关中的高电流所引起的功率损耗和温升。同步整流在高功率升压型 LED 驱动器中能够提供相同的好处,即使对于 1A 至 3A LED 也不例外。与降压型转换器不同的是,升压型转换器的峰值开关电流可能会远远高于 LED 电流,特别是在输出功率很高和输入电压很低的时候。

在很多场合中,同步升压型 LED 驱动器不可用于某种特定的应用。对于部分此类情形而言,可以采用一个同步降压型 LED 驱动器 IC,但其将不充当一个降压型转换器,而是起一个升压模式 (boost mode*) LED 驱动器的作用。

以 LT3744 40V 同步降压型 LED 驱动器为例,其专为驱动用于投影机的高电流 LED 而设计。该器件具有一个多用途的浮动 VEE 输出,因而允许其在高电流降压应用以及把高电流 LED 的正极连接至地以满足散热要求的正至负 (降压-升压型) 拓扑中使用。正是这种浮动 VEE 特性使得我们能够将这款原本是为降压应用而设计的器件实际上用作一个同步升压模式 LED 驱动器。

LT3744 升压模式 LED 驱动器

图 1 所示的 LT3744 同步升压模式 LED 驱动器可采用一个汽车输入 (9V ~ 16V) 来调节一个 3A、25V (75W) LED 灯串,并提供了 98% 的效率。即使在这一功率级别下,采用 12V 输入时的最大组件温升仅为 45°C,如图 2 所示。该 IC 可实现简易的 10:1 模拟调光和 100:1 PWM 调光实施方案 (在 120Hz 和采用接地参考输入信号时),即使 LED 灯串和 PWM 调光 MOSFET 均未连接至 GND 也不例外。

 

图 1:升压模式 9V~16V 输入至 25V、3A LED 驱动器 (效率达 98%)

 

图 2:升压模式 LED 热扫描显示了低温升操作

虽然 5mΩ 检测电阻器在该应用中设定了一个 10A 的峰值开关电流,但该解决方案也可更改为采用一个 6V 输入和一个 15A 峰值开关电流来运作;使用了一个数值合适的电感器和一个降低的欠压闭锁。

LT3744 上的负 VEE 电源轨能够达到 −21V。LT3744 通过处理接地参考输入控制信号的电平移位简化了设计。一个简单的接地参考 PWM 输入信号被电平移位至 PWMOUT,因此不需要采用额外的电平移位电路来控制 PWM MOSFET。同样,LED 电流设定检测电阻器可直接连接至负 VEE 电源轨,一直到低至 −21V。

经过电平移位的 GND 和 VEE

LT3744 LED 驱动器的电平移位、正至负转换特性是专为支持高电流接地正极 LED 驱动器而设计的。尽管如此,相同的特性亦可用于将 LED 灯串连接在 VIN 和一个负 VEE 电位之间的升压模式应用。由于 LED 检测电阻器和 PWM 调光 MOSFET 均安放于 LED 灯串的底部,因此来自接地参考 PWM 输入的电平移位 PWMOUT 信号产生了一种看起来并不比传统升压 PWM 调光设置复杂的拓扑。输入侧看似一个简单的 LED 驱动器,而且不管负 VEE 处在什么位置,CTRL 模拟调光、SYNC 输入和使能输入均参考于信号 GND。

LT3744 的 VEE 可一直降到低至 −21V。对于 25V VLED 应用,开路 LED 过压保护设定在约 26.5V。对于 25V VLED 升压模式应用而言,在考虑到一定的开路 LED 过冲的情况下,这将在负 VEE 变至超过 −21V 限值之前把 VIN 最小值限制在 6V 左右。为了能在最低 6V 的输入条件下运作,图 1 中的解决方案需要一个较低的欠压闭锁和一个能够容纳 15A 峰值开关电流限值的检测电阻器和电感器。对于较低 VLED 灯串 (在任何电流水平),只需进行一些简单的调整即可把最小输入电压降至 4V VIN。

关于升压模式的更多信息

升压模式转换器拥有许多与传统升压型稳压器相同的特性。如图 3 所示,除了与众不同的拓扑连接和高端开关 S1 (而不是低端开关) 的主控制之外,这款升压模式转换器具有与传统升压型转换器相同的占空比、纹波电流和电压应力。如果不需要同步整流,则可把一个异步降压型稳压器用作升压模式驱动器,并像在传统升压型稳压器中那样用一个典型的箝位二极管 D1 来替代 S2。

 

图 3:升压模式电流纹波、占空比和电压应力与传统升压型稳压器相同

图 4 中的增益–相位博德图表示:甚至连升压模式转换器的控制环路的作用都类似于一个传统的升压型稳压器。当交叉频率为 10kHz、相位余量为 60° 和增益裕度为 −15dB 时,图 1 所示的 LED 驱动器能够保持稳定和可靠。

 

图 4:升压模式控制环路增益和相位显示了典型带宽。

结论

同步整流是一种通常被要求用来限制高功率 LED 驱动器中的功率损耗之特性。如本文所述,可把一个同步降压型 LED 驱动器用作升压模式转换器,从而利用该特性在高性能降压型稳压器 IC 中的广泛可用性。特别地,LT3744 同步降压型 LED 驱动器可被用作一个高效率 9V ~ 16V 输入、25V LED 3A 升压模式 LED 驱动器,对于 75W 转换器可实现 98% 的效率。该器件拥有根据需要来对控制信号进行电平移位 (从 SGND 至 –VEE) 的独特能力,因而使得能够造就一种所需组件并不比传统升压转换器多的浮动升压模式拓扑。

注:

该 Boost mode 是一项正待专利审议的技术。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭