当前位置:首页 > 电源 > 电源-LED驱动
[导读]作者:Michael Bairanzade 安森美半导体低压电源管理部技术专家组资深成员 通过31级调光范围,现有LED驱动器能够提供良好的调光能力,从而为LCD显示屏提供平滑的背光增强

作者:Michael Bairanzade 安森美半导体低压电源管理部技术专家组资深成员

通过31级调光范围,现有LED驱动器能够提供良好的调光能力,从而为LCD显示屏提供平滑的背光增强或减弱效果。然而, 当终端应用涉及到较大的高端显示屏时,这样一个范围就可能不够了。特别是对于避免突兀的光亮度变化而言,有必要保持非常平滑的启动和关断,否则这种变化在LCD显示屏工作于较暗的环境中时就会被感知为脉冲光。为了消除这种视觉压力,需要更多的调光步骤,提供极低的启动序列。本文将阐述一种将现有LED驱动器从31级调光增加到93级的简单方法。

标准操作

通常来讲,发光二极管(LED)电流通过电流镜结构来监测,这种结构能够对流经LED的直流电流进行精确调节。电流不是由外部微控制器(MCU)就是由LED驱动器的内置逻辑来进行数字控制。对于逻辑电路产生的每一个步骤而言,电流增加(或减少,取决于终端用户选定的方向),LED的亮度就相应地变化。就这点而言,可以考虑两种光变化方法:要么是纯粹的线性曲线,要么是指数曲线。这两种方法各有其优缺点,但在选择何种曲线之前应该考虑人眼的感受。

从硅设计的角度讲,基本上线性曲线更为容易,但需要更多级(step)才能恰当地处理较小的光变化,特别是LED工作在低电流区域时。同样地,指数曲线集成到硅芯片中会较复杂,但需要的调光级较少,因为曲线的低端部分就能够在低端电流区域提供非常平滑的变化。考虑到人眼对光的反应,两相比较的结果就是指数曲线更适合,因为它会自动补偿人眼对光线感知的对数曲线。图1中的曲线说明了这种原理。

图1 典型的人眼感光度曲线

应用平滑的调光功能

凭借准指数形式的31级,安森美半导体的NCP5623将用作一个参考来描述高粒度的调光功能。基本上,这芯片含有一个电荷泵,用于产生给LED的足够电压,并含有三个独立的电流镜,用于精确地调节流经LED的直流正向电流。

峰值电流由IREF引脚产生的参考电流乘以2 N来设定,其中指数N是外部MCU所设定的级数:

ILED = [(Vref/R)×2600]/(32-N)

参考电压Vref由NCP5623的内部结构强制设定为600 mV,而电阻R连接Vref引脚和地。恒定系数2600是参考电流源和连接至LED的最后一个电流镜之间产生的内部比例。
此外,31级脉宽调制(PWM)与每个LED都相关,可对每个LED的亮度进行单独控制。基本的工作如图2所示。

图2 NCP5623的基本工作示意图

假设ILED峰值电流设定为25mA,第一级将使300μA(典型值)电流流经LED,使得零至ILED之间的变化对于人眼来说相对较为突兀,特别是在外界光亮度低的条件下。为了克服这一点,我们可以动态地降低参考电流,使得ILED变化较小:图3中所示的基本原理图阐释了这个业经证明的精确概念。HIGH-I和LOW-I这两位能由MCU结合起来动态地调节新的电流参考,从而产生新的ILED电流提供给LED。当然,如果这两位都是低电平,使参考电流变为零,那么就没有ILED流经LED。

图3 NCP5623参考电流的动态控制

另一种方法是利用现有PWM技术:将这个功能结合到单个LED中,就可在调光功能期间提供极宽的ILED电流变化。这个概念基于正常设置的ILED峰值电流等于将流至调光序列末端的预计总LED电流的三分之一。3个PWM将设定为串联形式,使工作期间的ILED变化较小。

这样一来的结果就是共有93个调光级,使用相同的准指数曲线来将ILED电流从零增加(或减小)至芯片中设定的最大ILED电流。假设最大ILED电流为15mA,NCP5623将设定为使每个输出电流为5mA,而第一级将使LED电流低于100mA,提供非常平滑的变化,而不会对人眼带来视觉压力。这序列将计算每个PWM的每一级,并启动下一个PWM,以增大流至LED的电流,使得计数器计数完成时产生设定的15 mA电流。图4所示的原理图阐述了应用于NCP5623的这个概念。

晶体管Q1用于补偿调光序列从一个PWM转至下一个PWM时产生的尖锋。基本上,电容C4区分电流镜输入引脚处出现的电压瞬态现象,通过强行施加一个短脉冲至外部电阻R3来降低参考电流IREF。

图4 高粒度调光功能


图5 典型的NCP5623增强型渐进调光功能

图5提供的曲线展示NCP5623在这种条件下的表现。它可以产生多达90级,得到平滑的上升过程,这样与人眼的感光度契合得很好。虽然蓝色曲线中有些点呈现出非光滑波形(主要是因为测量等级存在的误差),但多项式曲线(橙色)在调光级和ILED电流之间产生非常良好的契合关系。
结合图3中所描述的动态IREF控制功能和90级的序列,还有可能进一步提升曲线的平滑度。这里无需其它元件,只是需要软件程序来结合这两项机制。

结语

与动态可设定的参考电源源相关的嵌入式电流镜,使NCP5623能够在最终应用需要非常平滑调光时能处理超过90个调光级。此外,一种简单的软件程序提供180级的调光斜线扩展,使得系统在周围光照亮度极低的环境下能够产生极其平滑的曲线。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭