当前位置:首页 > 电源 > 电源-LED驱动
[导读]作者:Dhananjay V Gadre,Sheetal Vashist,ECE Division, Netaji Subhas Institute of Technology, New Delhi现代LED除了起到指示器和照明这些传统功用以外,还能充当光伏

作者:Dhananjay V Gadre,Sheetal Vashist,ECE Division, Netaji Subhas Institute of Technology, New Delhi

现代LED除了起到指示器和照明这些传统功用以外,还能充当光伏探测器(参考文献1和参考文献2)。简单地把红色LED连到万用表,用类似的红色LED等明亮光源照射它,就会产生大于1.4V的读数(图 1)。某个反向偏置LED的模型等效一个充电电容器,该电容器与一个依赖光的电流源并联(参考文献1)。如果增加入射光,就会增强电流源,并能使等效电容器快速放电至电源电压。


图2表示了一种把LED当作光伏探测器的方法。如果把微控制器的输出2号引脚连到LED的阴极,就会反向偏置,把LED的内部电容充电至电源电压。如果把LED的阴极连到3号输入引脚,就会把高阻抗负载连到LED。光照LED,就会产生光电流。LED的内部电容最初被充电至电源电压,通过光电流源放电,当电容器上的电压降到微控制器的较低逻辑阈值电压以下时,3号引脚会检测逻辑0。如果增加入射光强度,就会更快地使电容器放电,较低的光电平会使放电速率下降。微控制器是Atmel AVR ATtiny15,测量3号引脚的电压到达逻辑0的时间,并计算入射到LED的环境光强度。另外,微控制器按照与入射光的强度成比例的频率使该LED闪烁。


图3显示了Everlight Electronics有限公司的3mm超亮红色LED,即D1,它采用无色透明的密封剂,充当环境光传感器。该电路只有4个元件,依靠3V ~ 5.5V的任何直流电源工作。该电路只使用AVR ATtiny15 的6根I/O引脚中的3根,其余引脚可用于控制外部设备或与之通信。传感器LED连到AVR微控制器的端口引脚PB0和PB3。另一根端口引脚PB3产生一个频率与入射光强度成比例的方波。该电路的工作原理是首先把正向偏压施加到LED上,持续一段固定时间,然后改变被施加到PB0和PB1的比特序列,由此把反向偏压施加到LED上。接下来,微控制器把 PB0重新配置成输入引脚。内部定时环路测量被施加到PB0的电压从逻辑1降到逻辑0的时间间隔为T。


把引脚PB0和PB1重新配置用来把正向偏压施加到LED,就完成了循环。时间间隔T与入射到LED上的环境光强度成反比。对于较弱光线,LED以较低频率闪烁,随着入射光强度的增加,LED闪烁更加频繁,以便提供入射光强度的视觉指示。

对于较低的正向电流值,LED的光输出强度呈良好的线性度(参考文献2)。如需测试该电路,可把第二个相同LED的光输出耦合到传感器 LED,即图3中的D1。应该把这些LED 装在用不透明黑胶带遮盖的密封管中,由此确保外部光线不照射传感器LED。把照明LED的正向电流从0.33 mA改变为2.8mA,就会产生线性程度较高的传感器闪烁频率图(图4)。


作为传感器的LED的效率取决于它的反向偏压内部电流源和电容。如需估算反向光电流,可把一个1MΩ电阻器与传感器LED并联,并在施加一个来自外部光源的恒定照明度的同时,测量电阻器两端的电压。用 500kΩ和100kΩ电阻器代替1MΩ电阻器,重复测量。

对于处于恒定照明下并屏蔽了杂散环境光的代表性LED,我们为所有三个电阻器阻值测量到了大约25nA 的光电流。对于施加到传感器LED的相同照明度,可测量在引脚PB3产生的频率。

为计算LED的反向偏置电容,可把延时回路时间、LED的光伏电流、微控制器的逻辑1和逻辑0阈值电压代入公式并求解C,即LED的有效反向偏置结电容:(dV/dt)=(I/C),其中dV是测得的逻辑1电压减去逻辑0电压,dt是测得的LED内部电容放电时间,I是LED的光电流源的计算值。选定的LED的计算值范围是25pF ~ 60pF。该范围可与参考文献3和参考文献4中的数据相比,不过参考文献3只报告了电流源的值。可以从本设计实例下载AVR微控制器的汇编语言固件,表 1。

参考文献
1.Dietz, Paul, William Yerazunis, and Darren Leigh, "Very Low-Cost Sensing and Communication Using Bi-directional LEDs," Mitsubishi Research Laboratories, July 2003.
2.Petrie, Garry, "The Perfect LED Light," Resurgent Software, 2001.
3.Miyazaki, Eiichi, Shin Itami, and Tsutomu Araki, "Using a Light-Emitting Diode as a High Speed, Wavelength Selective Photodetector," Review of Scientific Instruments, Volume 69, No
11, November 1998, pg 3751, http://rsi.aip.org.
4."Optocoupler Input Drive Circuits," Application Note AN-3001, Fairchild Semiconductor, 2002

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭