当前位置:首页 > 电源 > 电源-LED驱动
[导读]我们的生活中处处可见LWED产品,有LED路灯,LED显示屏等,为我们的生活带来光明,同时也装饰着我们的生活,但是有谁知道LED的光衰呢?

我们的生活中处处可见LWED产品,有LED路灯,LED显示屏等,为我们的生活带来光明,同时也装饰着我们的生活,但是有谁知道LED的光衰呢?

(1)荧光粉在较高温度下的性能衰退

LED用的荧光粉受光激发效率随温度的变化关系,似乎还没有相关资料。但已有充分的事实可以证明,温度升高,确实影响到荧光粉的性能和寿命。有荧光粉厂家做了测试,在温度为80度时,荧光粉的激发效率降低了2%,冷却后又恢复。而这仅仅是做很短的时间的一个测试而已。已说明温度升高,荧光粉的性能下降。至于不可恢复的性能衰退,则是一个累计的过程,需要一定的时间。

我们也时常会遇到这样的事情,对白光LED使用或老化一段时间,发现LED更亮了。目前,这种状况对于小功率LED,一般在1000小时之内发生(这里是指1000小时的光通量可能大于初始值,2008年中期后的产品及贴片产品可接近或达到1000小时)。对于小功率封装的LED,这种状况可能维持到2000小时。这种状况可能由下列情况产生:

A:荧光粉和混合的胶作用,使荧光粉的性能降低,在温度的初期作用下,使荧光粉的性能恢复;B:荧光粉和混合的胶作用,使荧光粉的性能提高。C:蓝光芯片的初始一段时间性能有增强。

在试验中发现,在初始一段时间内,白光LED的光通量既有一开始就上升的,也有一开始就下降的。这种状况在相同的红光芯片在不同厂家封装时也有发生。所以,仅以短时间的实验是很难断定是荧光粉的问题,还是封装材料和封装工艺的问题。但是,在小功率蓝光LED的寿命试验中发现,普遍存在初始一段时间光通量上升的现象,如图2,一般光通量上升期在200小时左右。而插件白光的光通量上升期一般在100小时左右。由此也可以推断,白光LED应该是荧光粉的性能首先衰退。

小功率白光LED过了那个短暂的光通量提升期后,情况就很不乐观了,开始像没有翅膀的飞机,结果将不言而喻。大功率白光LED,一般也是在100小时左右光通量上升,之后到6000小时之间处于不是稳定的状态,随时间推移,某些产品的光通量有较大幅度的上升和下降的摆动。到了6000小时以后,基本上开始坚定不移地一路下滑。目前一般的大功率白光产品在1.5~2万小时到达生命的终点(光衰达到50%)。

(2)蓝光LED自身的快速衰退

就芯片相比较而言,蓝光LED的寿命是最差的,小功率插件蓝光LED在20mA工作下,寿命7000~10000小时左右。而小功率插件红光LED甚至在50mA下工作8000小时还没有光衰!同样的封装,红光消耗的功率是蓝光的1.8倍而性能没有恶化。黄光、绿光的寿命都远高于1万小时。所以,蓝光芯片自身寿命就差,先天的不足导致由它构成的白光LED的寿命更差。

就芯片的材料来看,蓝光和绿光LED芯片,主要是外延材料掺杂不同,衬底一般都是蓝宝石,衬底的导热能力向相同的。所以,外延部分的材料结构决定了他们的耐受温度的能力。这应该是芯片改进重点。在芯片的外延材料结构没有那么快改善的情况下,只有像这样,通过置换衬底材料来改进导热能力。

(3)LED封装底座(支架)材料及其他材料的导热不良

插件型的小功率LED,芯片固定用支架材料一般是铁质,从散热的角度看,铁质材料是很差的。同时,支架向外引出的部分,截面积很小,这也增加了热阻。即使是食人鱼支架,也同样存在截面积小的问题。材质和结构,决定了小功率插件封装导热能力很差。白光LED的光衰退问题,主要是热引起的,与LED热路径相关的材料都要被考虑。上面已经讨论了底座问题,剩下的就是固晶胶、配粉的胶、保护胶(透镜)的问题。

有资料表明,使用银浆固晶比用环氧树脂寿命长,但初始光通比环氧树脂低近1/3.使用环氧树脂作为配粉胶比用硅胶寿命短,但初始光通量相比高出25%.

(4)紫外辐射对LED的影响

紫外线对LED的影响,主要是对芯片材料、荧光粉和封装胶体的影响。受到影响最大的是封装胶体。一般LED不会对向太阳,进入到LED内部照射到荧光粉和芯片的紫外线只能是一些漫反射光线,所以,紫外线对芯片和荧光粉的作用并不是很强的。

以上就是白光LED的光衰的一些探究,不足之处还需要我们的设计者不断探究,这样我们的产品才会更加高效。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭