当前位置:首页 > 电源 > 电源电路
[导读]本文设计的电量测量仪强电部分很规范未有改动,在弱电部分串接了一个电流互感器和并接了一个电压互感器,将被测信号经取样前置放大.A/D转换后去CPU处理,增加了供信号处理的

本文设计的电量测量仪强电部分很规范未有改动,在弱电部分串接了一个电流互感器和并接了一个电压互感器,将被测信号经取样前置放大.A/D转换后去CPU处理,增加了供信号处理的直流电源。

该仪器直流电源经测绘如下图(下图)所示,不能适应AC110V的电源。

 

一款智能电量测量仪电源的设计电路

 

 

图1

仪表上的这么多数码管都要靠+5v电源来驱动,所以这是一个负载极不对称的正负双电源。市场上一时又没有买到AC100V~240V进.DC+/-5V双输出的开关电源,但在电子市场只买到了二个韩国三星产笔记本电脑用的交流适配器:AC 100—240V/1.8A进,DC 14V/3A出的开关电源。

采用TDA2030高效功率放大器作互补输出,将单极性电源转换成双极性电源,输出功率大,外围器件也比较少(见下图)。

 

一款智能电量测量仪电源的设计电路

 

 

图2

TDA2030是德律风根生产的音频功放电路,具有体积小、输出功率大、谐波失真和交越失真小等特点。

从上图可以看出:把TDA2030接成电压跟随器的形式,正输入端的两个电阻把电源电压的一半提供给le,le输出端的输出刚好是电源电压的一半,把输出作为虚拟的“地”,这个电路的特点是“虚地”,使用时“虚地”与输入电源的接地端必须完全隔离。

买来器件按图焊接好后接上电源通电测试,发现TDA2030集成块开机冲击电流很大,稳态需要大约30秒的时间.稳态后自身空载电流约为19mA,散热片发烫,虽然能把单电源转换成双电源,但它空载电流这么大.是不理想的。

为完成改装任务,还得继续上网寻找参考图纸,这次在网上“电子开发社区”找到了很多资料,时基电路555接成无稳态电路,3脚输出频率为20KHz、占空比为1:1的方波。3脚为高电平时,C4被充电;低电平时,C3被充电。由于VD1、VD2的存在,C3、C4在电路中只充电不放电,充电最大值为EC,将B端接地,在A、C两端就得到+/-EC的双电源。本电路输出电流超过50mA,不满足我们的要求。

但从中得到了启发:将几个方案组合一下形成了一个新的电路,它由电阻分压器,电压跟随器和并联调整管三个部分组成。具体原理图参见(下图)。

 

一款智能电量测量仪电源的设计电路

 

 

图3

原理分析:

电路由R1,R2组成分压器,分压值取出后送入运放同相输 入端5,两级运放都接成电压跟随器,第二级运放通过VT1,VT2并联调整管组合成电压跟随器,这样处理的好处是电路始终把Q’钳位在1/2Ec(即虚地 的零地位上)。当两路负载不相同时,调整管要工作,运放输出在R3上产生的压降作为VT1,VT2的发射偏置电压,使Q’比Q点低约0.7V。上图接法, 通过反馈回路可使两路负载不相同时,也能保持正负电源基本对称。

本电路是用在仪器直流供电方案,正电源负载大,负电源负载小,由 于上臂负载大,下臂负载小,会引起Q’点地位台高,迫使VT2导通,VT1截止,从而使上臂负载的部分电流经VT2分流,使Q’点地位下降,当Q’点地位 到达平衡值后,VT2截止。总之,VT2处于不断地调整工作中,所以它的散热器比VT1的散热器温升要高些。

LM358为双运算放大器,电源电压为3—30V,

D822为NPN功率三极管.BVceo>=30V,ICm=3A

B772为PNP功率三极管,BVceo>=-30V,cm=-3A从采用元件的参数可知:本电路适用输入电源在DC 30V以下,输出在正负15V以下的电源转换电路,最好是+/-5V~+/~12V双电源的变换较为可靠,输出电流控制在1A左右较为保险些。

制作要点:

1.先把R1.R2分压器和二级电压跟随器焊接好,暂时把运放反相输入端2接在Q点上,通电测试确保从市场上买来的运放LM358是良好的:输入电压为DC 14V,输出的电压为+7V和一7V.从图中可以看出电路功耗为零,证明LM358是好的。

2.按原理图所示焊接好并联调整管组件,并把运放反相输入端2接在Q’点上,确无误后,通电测试:输入电压为DC 14V.输出的电压为+7V和-7V,从图中可以看出电路功耗为零,证明单电源转双电源电路是好的。

3.改装三星开关电源:把开关电源塑壳拆下,通电后调节微调电位器,使其单电源输出由原DC 14V调整为DC 16V,并把微调电位器点胶固定牢。接入自做的转换板粘贴在塑壳上,最后插上电源通电测试,读数应为DC +/-8V,说明系统工作良好。

4.把二台仪器上原变压器用装好的转换器替代,把调压器调到110V,并接上负载带载对比测试一个小时。

5.换大散热器:经1小时带载检测,发现下臂调整管的散热器发烫,不利于长时间工作,必须把散热器面积增大。把散热器换大后带载连续测试8小时工作非常稳定。配置好美式插头,插座打包好寄到美国的销售公司,改制工作顺利完成。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭