当前位置:首页 > 单片机 > 单片机
[导读]从业将近十年!手把手教你单片机程序框架 第四讲:开场白:上一节提到在累计主循环次数来实现计时,随着主函数里任务量的增加,为了保证延时时间的准确性,要不断修正设定上限阀值const_time_level 。我们该怎么解决这

从业将近十年!手把手教你单片机程序框架 第四讲:

开场白:

上一节提到在累计主循环次数来实现计时,随着主函数里任务量的增加,为了保证延时时间的准确性,要不断修正设定上限阀值const_time_level 。我们该怎么解决这个问题呢?本节教大家利用累计定时中断次数的方法来解决这个问题。这一节要教会大家四个知识点:

第一点:利用累计定时中断次数的方法实现时间延时

第二点:展现鸿哥最完整的实战程序框架。在主函数循环里用switch语句实现状态机的切换,在定时中断里累计中断次数,这两个的结合就是我写代码最本质的框架思想。 

第三点:提醒大家C语言中的int ,long变量是由几个字节构成的数据,凡是在main函数和中断函数里有可能同时改变的变量,这个变量应该在主函数中被更改之前,先关闭相应的中断,更改完了此变量,再打开中断,否则会留下不宜察觉的漏洞。当然在大部分的项目中可以不用这么操作,但是在一些要求非常高的项目中,有一些核心变量必须这么做。

第四点:定时中断的初始值该怎么设置。不用严格按公式来计算时间,一般取个经验值是最大初始值减去1000就可以了。

具体内容,请看源代码讲解。

 

(1)硬件平台:基于朱兆祺51单片机学习板。

 

(2)实现功能:让一个LED闪烁。

 

(3)源代码讲解如下:

 

#include "REG52.H"

 

#define const_time_level 200  

 

void initial_myself();    

void initial_peripheral();

void delay_long(unsigned int uiDelaylong);

void led_flicker();

void T0_time();  //定时中断函数

 

sbit led_dr=P3^5;  

 

unsigned char ucLedStep=0; //步骤变量

unsigned int  uiTimeCnt=0; //统计定时中断次数的延时计数器

 

 

void main() 

  {

   initial_myself();  

   delay_long(100);   

   initial_peripheral(); 

   while(1)   

   {

      led_flicker();   

   }

 

}

 

void led_flicker() ////第三区 LED闪烁应用程序

{

  

  switch(ucLedStep)

  {

     case 0:

/* 注释一:

* uiTimeCnt累加定时中断的次数,每一次定时中断它都会在中断函数里自加一。

* 只有当它的次数大于或等于设定上限const_time_level时,

* 才会去改变LED灯的状态,否则CPU退出led_flicker()任务,继续快速扫描其他的任务,

* 这样的程序结构就可以达到多任务并行处理的目的。这就是鸿哥在所有开发项目中的核心框架。

*/

                  if(uiTimeCnt>=const_time_level) //时间到

                  {

 

/* 注释二:

* ET0=0;uiTimeCnt=0;ET0=1;----在清零uiTimeCnt之前,为什么要先禁止定时中断?

* 因为uiTimeCnt是unsigned int类型,本质上是由两个字节组成。

* 在C语言中uiTimeCnt=0看似一条指令,实际上经过编译之后它不只一条汇编指令。

* 由于定时中断函数里也对这个变量进行累加操作,如果不禁止定时中断,

* 那么uiTimeCnt这个变量在main()函数中还没被完全清零的时候,如果这个时候

* 突然来一个定时中断,并且在中断里又更改了此变量,这种情况在某些要求高的

* 项目上会是一个不容易察觉的漏洞,为项目带来隐患。当然,大部分的普通项目,

* 都可以不用那么严格,可以不用禁止定时中断。在这里只是提醒各位初学者有这种情况。

*/

             ET0=0;  //禁止定时中断

                     uiTimeCnt=0; //时间计数器清零

             ET0=1; //开启定时中断

             led_dr=1;    //让LED亮

                         ucLedStep=1; //切换到下一个步骤

                  }

              break;

     case 1:

                  if(uiTimeCnt>=const_time_level) //时间到

                  {

             ET0=0;  //禁止定时中断

                     uiTimeCnt=0; //时间计数器清零

             ET0=1;   //开启定时中断

             led_dr=0;    //让LED灭

                         ucLedStep=0; //返回到上一个步骤

                  }

              break;

  

  }

 

}

 

 

/* 注释三:

* C51的中断函数格式如下:

* void 函数名() interrupt 中断号

* {

*    中断程序内容

* }

* 函数名可以随便取,只要不是编译器已经征用的关键字。

* 这里最关键的是中断号,不同的中断号代表不同类型的中断。

* 定时中断的中断号是 1.至于其它中断的中断号,大家可以查找

* 相关书籍和资料。大家进入中断时,必须先清除中断标志,并且

* 关闭中断,然后再写代码,最后出来时,记得重装初始值,并且

* 打开中断。

*/

void T0_time() interrupt 1

{

  TF0=0;  //清除中断标志

  TR0=0; //关中断

 

  if(uiTimeCnt<0xffff)  //设定这个条件,防止uiTimeCnt超范围。

  {

      uiTimeCnt++;  //累加定时中断的次数,

  }

 

TH0=0xf8;   //重装初始值(65535-2000)=63535=0xf82f

TL0=0x2f;

TR0=1;  //开中断

}

 

 

void delay_long(unsigned int uiDelayLong)

{

   unsigned int i;

   unsigned int j;

   for(i=0;i<uiDelayLong;i++)

   {

      for(j=0;j<500;j++)  //内嵌循环的空指令数量

          {

             ; //一个分号相当于执行一条空语句

          }

   }

}

 

 

void initial_myself()  //第一区 初始化单片机

{

 

/* 注释四:

* 单片机有几个定时器,每个定时器又有几种工作方式,

* 那么多种变化,我们记不了那么多,怎么办?

* 大家记住鸿哥的话,无论一个单片机有多少内置资源,

* 我们做系统框架的,只需要一个定时器,一种工作方式。

* 开定时器越多这个系统越不好。需要哪种定时工作方式呢?

* 就需要响应定时中断后重装一下初始值继续跑那种。

* 在51单片机中就是工作方式1。其它的工作方式很少项目能用到。

*/

  TMOD=0x01;  //设置定时器0为工作方式1

 

 

  /* 注释五:

* 装定时器的初始值,就像一个水桶里装的水。如果这个桶是空桶,那么想

* 把这个桶灌满水的时间就很长,如果是里面已经装了大半的水,那么想

* 把这个桶灌满水的时间就相对比较短。也就是定时器初始值越小,产生一次

* 定时中断的时间就越长。如果初始值太小了,每次产生定时中断

* 的时间分辨率太粗,如果初始值太大了,虽然每次产生定时中断的时间分辨率很细,

* 但是太频繁的产生中断,不但会影响主函数main()的执行效率,而且累记中断次数

* 的时间误差也会很大。凭鸿哥多年的江湖经验,

* 我觉得最大初始值减去2000是比较好的经验值。当然,大一点小一点没关系。不要走

* 两个极端就行。

*/

TH0=0xf8;   //重装初始值(65535-2000)=63535=0xf82f

TL0=0x2f;

 

  led_dr=0;  //LED灭

}

void initial_peripheral() //第二区 初始化外围

{

  EA=1;     //开总中断

  ET0=1;    //允许定时中断

  TR0=1;    //启动定时中断

}

总结陈词:

本节程序麻雀虽小五脏俱全。在本节中已经展示了我最完整的实战程序框架。

本节程序只有一个LED灯闪烁的单任务,如果要多增加一个任务来并行处理,该怎么办?

欲知详情,请听下回分解-----蜂鸣器的驱动程序。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭