当前位置:首页 > 单片机 > 单片机
[导读]从业近十年!手把手教你单片机程序框架 第41讲开场白:上一节讲了常用的自定义串口通讯协议的程序框架,这种框架在判断一串数据是否接收完毕的时候,都是靠“超过规定的时间内,没有发现串口数据”来判定的

从业近十年!手把手教你单片机程序框架 第41讲

开场白:

上一节讲了常用的自定义串口通讯协议的程序框架,这种框架在判断一串数据是否接收完毕的时候,都是靠“超过规定的时间内,没有发现串口数据”来判定的,这是我做绝大多数项目的串口程序框架,但是在少数要求实时反应非常快的项目中,这样的程序框架可能会满足不了系统对速度的要求,这一节就是要介绍另外一种响应速度更加快的串口程序框架,要教会大家一个知识点:在串口接收中断里即时解析数据头的特殊程序框架。我在这种程序框架里,会尽量简化数据头和数据尾,同时也简化校验,目的都是为了提高响应速度。

具体内容,请看源代码讲解。

(1)硬件平台:

基于朱兆祺51单片机学习板。

(2)实现功能:

波特率是:9600.

通讯协议:EB GG XX XX XX XX ED

其中第1位EB就是数据头.

其中第2位GG就是数据类型。01代表驱动蜂鸣器,02代表驱动Led灯。

其中第3,4,5,6位XX就是有效数据长度。高位在左,低位在右。

其中第7位ED就是数据尾,在这里也起一部分校验的作用,虽然不是累加和的方式。

在本程序中,

当数据类型是01时,4个有效数据代表一个long类型数据,如果这个数据等于十进制的123456789,那么蜂鸣器就鸣叫一声表示正确。

当数据类型是02时,4个有效数据代表一个long类型数据,如果这个数据等于十进制的123456789,那么LED灯就会闪烁一下表示正确。

十进制的123456789等于十六进制的75bcd15 。

发送以下测试数据,将会分别控制蜂鸣器Led灯。

控制蜂鸣器发送:eb 01 07 5b cd 15 ed

控制LED灯发送:eb 02 07 5b cd 15 ed

(3)源代码讲解如下:

#include "REG52.H"

#define const_rc_size 20 //接收串口中断数据的缓冲区数组大小

#define const_receive_time 5 //如果超过这个时间没有串口数据过来,就认为一串数据已经全部接收完,这个时间根据实际情况来调整大小

#define const_voice_short 80 //蜂鸣器短叫的持续时间

#define const_led_short 80 //LED灯亮的持续时间

void initial_myself(void);

void initial_peripheral(void);

void delay_long(unsigned int uiDelaylong);

void T0_time(void); //定时中断函数

void usart_receive(void); //串口接收中断函数

void led_service(void); //Led灯的服务程序。

sbit led_dr=P3^5; //Led的驱动IO口

sbit beep_dr=P2^7; //蜂鸣器的驱动IO口

unsigned int uiRcregTotal=0; //代表当前缓冲区已经接收了多少个数据

unsigned char ucRcregBuf[const_rc_size]; //接收串口中断数据的缓冲区数组

unsigned int uiVoiceCnt=0; //蜂鸣器鸣叫的持续时间计数器

unsigned char ucVoiceLock=0; //蜂鸣器鸣叫的原子锁

unsigned int uiRcVoiceTime=0; //蜂鸣器发出声音的持续时间

unsigned int uiLedCnt=0; //Led灯点亮的计时器

unsigned char ucLedLock=0; //Led灯点亮时间的原子锁

unsigned long ulBeepData=0; //蜂鸣器的数据

unsigned long ulLedData=0; //LED的数据

unsigned char ucUsartStep=0; //串口接收字节的步骤变量

void main()

{

initial_myself();

delay_long(100);

initial_peripheral();

while(1)

{

led_service(); //Led灯的服务程序

}

}

void led_service(void)

{

if(uiLedCnt

{

led_dr=1; //开Led灯

}

else

{

led_dr=0; //关Led灯

}

}

void T0_time(void) interrupt 1 //定时中断

{

TF0=0; //清除中断标志

TR0=0; //关中断

/* 注释一:

* 此处多增加一个原子锁,作为中断与主函数共享数据的保护,实际上是借鉴了"红金龙吸味"关于原子锁的建议.

*/

if(ucVoiceLock==0) //原子锁判断

{

if(uiVoiceCnt!=0)

{

uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫

beep_dr=0; //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。

}

else

{

; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。

beep_dr=1; //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。

}

}

if(ucLedLock==0) //原子锁判断

{

if(uiLedCnt

{

uiLedCnt++; //Led灯点亮的时间计时器

}

}

TH0=0xfe; //重装初始值(65535-500)=65035=0xfe0b

TL0=0x0b;

TR0=1; //开中断

}

void usart_receive(void) interrupt 4 //串口接收数据中断

{

/* 注释二:

* 以下就是吴坚鸿在串口接收中断里即时解析数据头的特殊程序框架,

* 它的特点是靠数据头来启动接受有效数据,靠数据尾来识别一串数据接受完毕,

* 这里的数据尾也起到一部分的校验作用,让数据更加可靠。这种程序结构适合应用

* 在传输的数据长度不是很长,而且要求响应速度非常高的实时场合。在这种实时要求

* 非常高的场合中,我就不像之前一样做数据累加和的复杂运算校验,只用数据尾来做简单的

* 校验确认,目的是尽可能提高处理速度。

*/

if(RI==1)

{

RI = 0;

switch(ucUsartStep) //串口接收字节的步骤变量

{

case 0:

ucRcregBuf[0]=SBUF;

if(ucRcregBuf[0]==0xeb) //数据头判断

{

ucRcregBuf[0]=0; //数据头及时清零,为下一串数据的接受判断做准备

uiRcregTotal=1; //缓存数组的下标初始化

ucUsartStep=1; //如果数据头正确,则切换到下一步,依次把上位机来的数据存入数组缓冲区

}

break;

case 1:

ucRcregBuf[uiRcregTotal]=SBUF; //依次把上位机来的数据存入数组缓冲区

uiRcregTotal++; //下标移动

if(uiRcregTotal>=7) //已经接收了7个字节

{

if(ucRcregBuf[6]==0xed) //数据尾判断,也起到一部分校验的作用,让数据更加可靠,虽然没有用到累加和的检验方法

{

ucRcregBuf[6]=0; //数据尾及时清零,为下一串数据的接受判断做准备

switch(ucRcregBuf[1]) //根据不同的数据类型来做不同的数据处理

{

case 0x01: //与蜂鸣器相关

ulBeepData=ucRcregBuf[2]; //把四个字节的数据合并成一个long型的数据

ulBeepData=ulBeepData<<8;

ulBeepData=ulBeepData+ucRcregBuf[3];

ulBeepData=ulBeepData<<8;

ulBeepData=ulBeepData+ucRcregBuf[4];

ulBeepData=ulBeepData<<8;

ulBeepData=ulBeepData+ucRcregBuf[5];

if(ulBeepData==123456789) //如果此数据等于十进制的123456789,表示数据正确

{

ucVoiceLock=1; //共享数据的原子锁加锁

uiVoiceCnt=const_voice_short; //蜂鸣器发出声音

ucVoiceLock=0; //共享数据的原子锁解锁

}

break;

case 0x02: //与Led灯相关

ulLedData=ucRcregBuf[2]; //把四个字节的数据合并成一个long型的数据

ulLedData=ulLedData<<8;

ulLedData=ulLedData+ucRcregBuf[3];

ulLedData=ulLedData<<8;

ulLedData=ulLedData+ucRcregBuf[4];

ulLedData=ulLedData<<8;

ulLedData=ulLedData+ucRcregBuf[5];

if(ulLedData==123456789) //如果此数据等于十进制的123456789,表示数据正确

{

ucLedLock=1; //共享数据的原子锁加锁

uiLedCnt=0; //在本程序中,清零计数器就等于自动点亮Led灯

ucLedLock=0; //共享数据的原子锁解锁

}

break;

}

}

ucUsartStep=0; //返回上一步数据头判断,为下一次的新数据接收做准备

}

break;

}

}

else //我在其它单片机上都不用else这段代码的,可能在51单片机上多增加" TI = 0;"稳定性会更好吧。

{

TI = 0;

}

}

void delay_long(unsigned int uiDelayLong)

{

unsigned int i;

unsigned int j;

for(i=0;i

{

for(j=0;j<500;j++) //内嵌循环的空指令数量

{

; //一个分号相当于执行一条空语句

}

}

}

void initial_myself(void) //第一区 初始化单片机

{

led_dr=0; //关Led灯

beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。

//配置定时器

TMOD=0x01; //设置定时器0为工作方式1

TH0=0xfe; //重装初始值(65535-500)=65035=0xfe0b

TL0=0x0b;

//配置串口

SCON=0x50;

TMOD=0X21;

TH1=TL1=-(11059200L/12/32/9600); //这段配置代码具体是什么意思,我也不太清楚,反正是跟串口波特率有关。

TR1=1;

}

void initial_peripheral(void) //第二区 初始化外围

{

EA=1; //开总中断

ES=1; //允许串口中断

ET0=1; //允许定时中断

TR0=1; //启动定时中断

}

复制代码总结陈词:

前面花了4节内容仔细讲了各种串口接收数据的常用框架,从下一节开始,我开始讲串口发送数据的程序框架,这种程序框架是什么样的?欲知详情,请听下回分解-----通过串口用delay延时方式发送一串数据。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

本设计的控制系统主要包括:倾斜模块、超声波模块、语音模块、光敏电阻模块及电源等。

关键字: 单片机 STC51

本文针对电动两轮车自燃防控装置的开发与分析进行了研究。通过电动两轮车自燃原因分析,提出了电动两轮车的自燃防控智能装置设计思路,介绍了电动两轮车的自燃防控智能

关键字: STC89C52RC 单片机 微控制器

现在市面上还不存在一种方便实验人员选取芯片,以及方便管理人员对芯片进行智能化管理的芯片柜,为此希望通过研发这款智能芯片柜,来解决以上问题。​

关键字: 单片机 芯片

这款全新的中端MCU系列为设计人员提供了更高水平的安全性和灵活性

关键字: 嵌入式 单片机

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

在现代电子技术的快速发展中,单片机以其高度的集成性、稳定性和可靠性,在工业自动化、智能家居、医疗设备、航空航天等诸多领域得到了广泛应用。S32单片机,作为其中的佼佼者,其引脚功能丰富多样,是实现与外部设备通信、控制、数据...

关键字: s32单片机引脚 单片机

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器
关闭
关闭