当前位置:首页 > 单片机 > 单片机
[导读]如果从keil里看了c语言的反汇编代码然后根据晶振和指令计算延时的时间这样虽然非常的准确但是相当的麻烦而且容易搞错,我这里介绍一个最简单的方法.可以验证你的延时函数。

如果从keil里看了c语言的反汇编代码然后根据晶振和指令计算延时的时间这样虽然非常的准确但是相当的麻烦而且容易搞错,我这里介绍一个最简单的方法.可以验证你的延时函数

这里用一个例程详细介绍一下。

过程参考如下:

在编译器下建立一个新项目,也可以利用已有项目。此过程中需要注意,单片机晶振的选择,因为for循环里指令的执行时间和晶振有直接关系,本例中晶振使用11.0592M。

编写一段关于延时的函数,主要利用for循环,代码如下:

void delay_ms(unsigned int ms)

{

unsigned int i;

unsigned char j;

for(i=0;i

{

for(j=0;j<200;j++);

for(j=0;j<102;j++);

}

}

其中ms是输入参数,如果输入1,就是要求程序延时1ms。

j变量是调整程序运行的时间参数。调整j的数值,使1次循环的时间在1ms。

将此程序编译通过,然后利用软件仿真,调整时间。

下面这个sec就是程序运行到现在的这一行所用的时间。

两次时间差就是延时函数使用的时间,如果与1ms相差比较多,用户可以调整j参数的值,使延时时间尽量接近1ms。如增大j的值for(j=0;j<105;j++);

此方法得出延时函数,在晶振不同的情况下,延时时间会不准。软件调试结果,这个程序的延时时间为:1.01779ms,一般的单片机系统中都可以应用。

下面来说说汇编的传统计算方法:

指令周期、机器周期与时钟周期

指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。

时钟周期:也称为振荡周期,一个时钟周期 =晶振的倒数。

MCS-51单片机的一个机器周期=6个状态周期=12个时钟周期。

MCS-单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/12000000)=1us。

了解了上面这些我们来看一个例子

;============延时1秒子程序========================

DELAY_1S: ;延时子程序,12M晶振延时1.002035秒

MOV R4,#10

L3: MOV R2 ,#200 ;1指令周期

L1: MOV R3 ,#249 ;1指令周期

L2: DJNZ R3 ,L2 ;2指令周期

DJNZ R2 ,L1 ;2指令周期

DJNZ R4 ,L3 ;2指令周期

RET ;2指令周期

;循环体延时时间: [(249*2+1+2)*200+1+2]*10*12/12000000=1.002030s

;加上ACALL指令和第一条mov指令以及最后一条RET指令算出来整个函数的时间为1.002035s

;================================================

通常选用的是11.0592MHZ的晶振:

[(249*2+1+2)*200+1+2]*10*12/11059200=1.08727213541666666...S

汇编延时子程序的延时计算问题

对于程序

DELAY: MOV R0,#00H

DELAY1: MOV R1,#0B3H

DJNZ R1,$

DJNZ R0,DELAY1

查指令表可知 MOV一个机器周期,DJNZ 指令需用两个机器周期,而一个机器周期时间长度为12/11.0592MHz,所以该段程序执行时间为:

((0B3×2+1+2)×256+1)×12÷11059200=100.2789mS

第一层:DJNZ R1,$:执行了B3H次,一次两个周期,所以为0B3×2;

第二层:MOV R1,#0B3H为一个周期,DJNZ R0,DELAY1为两个周期,这样循环一次就是0B3×2+1+2个周期;第二层的执行次数本来是255次,但因为赋首值为0,而DJNZ是先减1,再比较的,所以就应该是256次。

这样的话,整个循环执行完应该是(0B3×2+1+2)×256+1次。再加上开始赋值这一句,就是((0B3×2+1+2)×256+1)了

还说明一下:

nop指令或者_nop_(); 函数占一个机器周期,在stc单片机的12T模式下一个机器周期是一个振荡周期的12分频,如果你的晶振是12MHZ,那你的一个机器周期就是1微秒.一个nop指令的执行时间也就是1US

当在6T模式(下载的时候可选择模式)下12M晶振的时候,一个nop就是0.5US了.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭