当前位置:首页 > 模拟 > 模拟
[导读]目前,包括通信收发机、仪器、工业控制和雷达等在内的许多系统都需要控制射频功率,因此需要准确测量射频功率。在这些系统中,RF功率测量及控制有助于确保系统安全、高效地运行。1.早期的检波方法是采用二极管做检波

目前,包括通信收发机、仪器、工业控制和雷达等在内的许多系统都需要控制射频功率,因此需要准确测量射频功率。在这些系统中,RF功率测量及控制有助于确保系统安全、高效地运行。

1.早期的检波方法是采用二极管做检波电路,但是二极管组成的简单电路,其灵敏度,温度稳定性都较差。因此越来越多的场合采用集成IC来做检波电路。

Hittite推出的对数检波器IC系列产品,其内部拓扑结构如下图:

这个器件的核心是一系列级联的放大器,这些放大器通常有10-20dB的线性增益,具体值取决于不同的设计目的。设想一个小信号正弦波进入第一个放大器,第一个放大器将会在它到达第二个放大器前放大信号10dB。因此信号每往下走一级,就会有10dB的增益。随着信号在链路中的传递,在它到某一级的时候将会被(限幅器)斩波。放大器的精度是相同的。当信号在某一级进入限制状态后,这个限幅信号仍然会传播,在每一级都被斩波,保持其1v峰值振幅传输。

IC内部有多个放大器及检波管组合,通过设计使输出电压和输入RF信号的对数成正比。

这种设计确保输入信号的功率变化很大时,仍能在输出端准确的检测出所需信号,即可以检测大动态范围的输入信号。

经过精心设计的Hittite对数检波器同时还具有优异的灵敏度和温度稳定性。Hittite的所有检波器都可提供差分及单端输入,差分结构有助于射频工程师解决零中频架构的直流偏移问题。

Hittite对数检波器家族包括了HMC601LP4,HMC602LP4,HMC611LP4,HMC612LP4,HMC713LP4,HMC713MS8,适合CW波调制,雷达应用。其中HMC713的非常适合移动通信应用,价格比市场的其他品牌同类产品低近1/3。

2.当用对数检波器来检测峰值因素高的信号,如第三代移动通信CDMA2000,不同的多载波信号会有不同的峰值因数,这导致使用峰值检波器无法准确测量。

如果该误差能固定,也可以通过修正来得到正确的功率值,但是在某些实际应用中,其呼叫负载不断发生变化会影响到修正值。因此平均功率测量最适用于处理调制包络幅度随时间变化的系统,如IS-95,CDMA2000,W-CDMA和TD-sCDMA。

Hittite推出的均值检波器HMC1010LP4,在DC-3.9GHz,动态范围可达60dB,测量值受信号波峰因数变化影响非常小,主要取决于信号的平均功率。在响应时间及纹波上,独创了业界领先的软件控制方式,让工程师从繁琐的硬件调试中解脱出来。而且该产品比同类产品低10%,对于动态范围需求较低的如40dB的场合,hittite有极具价格优势的HMC909LP4E可满足你的成本需求。

3. 正交频分复用(OFDM)系统由于高的频谱利用率以及抗码间干扰(ISI)和多径衰落,主要应用于数字视频广播系统、MMDS(Multichannel Multipoint Distribution Service)多信道多点分布服务和WLAN服务以及下一代陆地移动通信系统。

由于OFDM信号时域上为N个正交子载波信号的叠加,当这N个信号恰好都以峰值出现并将相加时,OFDM信号也将产生最大峰值,该峰值功率是平均功率的N倍。尽管峰值功率出现的概率较低,但为了不失真地传输这些高峰均功率比PAPR(Peak to Average Power Ratio)的OFDM信号,发送端对高功率放大器(HPA)的线性度要求很高且发送效率极低,同样接收端对前端放大器以及A/D变换器的线性度要求也很高,因此高的PAPR使得OFDM系统的性能大大下降。因此,需要检测系统的PAPR。

Hittite公司推出的可测量峰均比的均值检波器HMC614LP4,HMC714LP5.其电路原理图如下:

计算公式如下:

HMC614LP4不但可以准确的测量信号的平均功率还可以监测其峰均比,确保系统不失真的传输信号。

HMC714LP5是双通道产品,相比单通道产品能提供更强大的功率检测功能,有多达6个输出端口,分别可检测两个通道的均值输出,峰值输出,以及两个通道的差值输出。HMC714LP5可检测频率范围从100MHz到3900MHz,比市场上同类产品宽了40%多,可应用于3G,LTE,WINMAX。其动态范围从-55dBm到15dBm,高达70dB,也比同类产品大了10dB。

Hittite公司的检波器家族发展迅猛,紧跟通信的发展,使你从容应对在不同系统中准确测量射频功率的挑战。

欲知更多详情请联系Hittite授权代理商世强电讯



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭