当前位置:首页 > 模拟 > 模拟
[导读]清华大学(中国北京)与全球知名半导体制造商罗姆(总部位于日本京都)于2018年9月25日在清华大学举办了“清华‐\罗姆电子工程馆”捐建 10周年纪念庆典。

回顾十年产学合作成果,约定共同走向世界一流

清华大学(中国北京)与全球知名半导体制造商罗姆(总部位于日本京都)于2018年9月25日在清华大学举办了“清华‐罗姆电子工程馆”捐建 10周年纪念庆典。

2006年4月,为促进围绕尖端技术展开的联合研究与技术交流,清华大学和罗姆签署了“科研合作框架协议”。10年前,为了进一步加强合作,罗姆就捐建“清华‐罗姆电子工程馆”事宜与清华大学达成共识,并于2008年9月25日举行了签字仪式。

百年校庆之际,“清华-罗姆电子工程馆”于2011年4月22日竣工, 并于同年12月投入使用。作为教学科研平台,“清华-罗姆电子工程馆”不仅极大促进了清华大学电子工程系的学科发展,同时还为国际著名的学者和科研人员提供了分享创意、知识及技术的场所。

为纪念这一富有成效的产学合作基石 —“清华-罗姆电子工程馆”签约10周年,清华大学与罗姆于2018年9月25日举行了纪念庆典。当天,清华大学党委书记陈旭、时任校长顾秉林院士、副校长王希勤教授,罗姆顾问泽村谕先生(罗姆前社长)、高须秀视先生(前任常务董事)、末永良明董事等为双方交流尽心尽力的领导、校友及相关人员出席了活动。在庆典上,清华大学介绍了“清华-罗姆电子工程馆”的历史以及为电子信息领域的发展做出的贡献,汇报了联合研究的成果,同时介绍了清华-罗姆电子工程馆内的众多国际领先的实验设施。

展望未来,清华大学和罗姆将进一步深化产学合作,共同走向世界一流,致力于为各个领域和市场的技术创新贡献力量。

 

 

 

庆典现场 纪念合影

 

  

 

互赠纪念品 清华大学党委书记陈旭致辞

<清华大学电子工程系系主任黄翊东教授发表的“清华-罗姆电子工程馆”活动报告>

目前,在清华大学电子工程系的“清华-罗姆电子工程馆”内,拥有微波暗室、用于先进光电子器件研发的超净实验室、纳米光电子试验中心、人工智能大数据中心等实验平台。 2012年以来已培养了4000多名优秀本科生、硕士和博士研究生。

清华大学电子工程系近年来在研究成果方面取得了许多全球瞩目的领先成果,其中包括与罗姆联合开发的世界首款基于铁电技术的非易失处理器。清华大学在电子工程领域的大学排名已连续两年进入全球前10名。

同时,在馆内开展的包括与国内外知名企业合作在内的国际国内科研合作项目超过440项,并接待了来自国内外的1150名访客。另外,在馆内举办了760多次大规模会议和交流活动,其中包括国内外的学术会议、论坛、交流会、重要且影响广泛的研讨会、学生竞赛及夏令营等。这些活动不仅促进了电子工程系在国际上获得成就与知名度,也提高了罗姆在中国国内外各个领域和市场的知名度。“清华-罗姆电子工程馆”不仅是教育、科研和学术交流的平台,也已成为清华大学内新的标志性建筑。

此外,“清华-罗姆电子工程馆”也成为清华大学和罗姆联合研究的重要基地。2009年,为了促进广泛而密切的合作,双方成立了“清华‐罗姆联合研究中心(JRC)”。此后,JRC陆续进行了16项联合研究项目,涉及非易失处理器、电力电子、传感器、物联网(IoT)、通信、生物电子等广泛课题,以及融合不同领域技术的传感器网络等先进技术。其中,联合研发的全球首款非易失处理器得到了世界范围内的高度好评。

在最近的联合研究中,双方正在致力于研究利用人工智能对制造设备健康监控技术,旨在助力打造智能生产系统。展望未来,JRC将推进用于新能源车、智能工厂等相关关键技术研究,致力发展成为与工业技术创新直通的研究场所。

<清华大学与罗姆合作历程>

●2006年4月双方签订产学合作框架协议,促进对尖端技术进行联合研究。

●2008年9月罗姆就捐建“清华‐罗姆电子工程馆”事宜与清华大学达成共识,并举行签约仪式。

●2009年10月成立清华‐罗姆联合研究中心(JRC)。本平台建成后,双方进行了针对最前沿技术的联合研究,并在AI、传感器网络技术以及电力电子技术等领域取得了丰硕成果。

●2010年5月举办第一届“清华‐罗姆国际产学连携论坛(Tsinghua-ROHM International Forum of Industry-Academia: TRIFIA)”。该论坛以热点技术为主题, 以促进国际产学合作交流为目的,每年举办一届,已经成为有一定影响力的年度学术和技术交流活动。

●2011年4月在纪念清华大学成立100周年之际,举办“清华‐罗姆电子工程馆”的落成典礼。

●2012年9月发表世界首款基于铁电技术的非易失处理器这一联合研究成果。

●2015年2月与非易失处理器的联合研究成果相关论文在HPCA2015(International Symposium on High-Performance Computer Architecture 2015)上荣获最佳论文奖。

●2016年8月清华大学学生科学技术协会约20名主席团成员访问罗姆在日本京都的总部,学习并了解罗姆相关的技术、环境和文化背景。

●2017年6月在国际顶级VLSI研讨会上发表基于非易失处理器、利用环境供电的传感器节点研究论文。

●2017年10月罗姆加入清华大学校企合作委员会(UICC)。

●2018年1月 罗姆加入由清华汽车产业与技术战略研究院(TASRI)主办的“汽车产业与技术研究会(CAIT)”。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭