当前位置:首页 > 消费电子 > 消费电子
[导读]我们日常所用的数码设备,大多数都是使用通过AC适配器生成的直流电压作为输入电压,然后通过电源IC来升降电压。在使用耗电量较高的半导体时,会特别用到100μF以上的平滑用电容器。

我们日常所用的数码设备,大多数都是使用通过AC适配器生成的直流电压作为输入电压,然后通过电源IC来升降电压。在使用耗电量较高的半导体时,会特别用到100μF以上的平滑用电容器。此外,随着半导体的低电压化和高速化,为了保持其工作稳定性,就需要用到低阻抗型的平滑电容器。因此,村田制作所(以下简称“村田”)又进一步扩充了100μF以上的大容量多层陶瓷电容器产品阵容。

图1.100μF多层陶瓷电容器(例:3.2x2.5mm尺寸:330μF)

电容器根据其基本结构、材料的不同,大致分为图2中的几种。从图中我们可以看到多层陶瓷电容器虽然在静电容量的温度依赖性,施加电压导致有效容量下降(DC偏压特性)方面略有不足,但其小型化、高可靠性、高价格竞争力、低阻抗/低ESR*1/低ESL*2等优势十分显著。因此在如今小型、大容量的电容器领域,多层陶瓷电容器已经成为主流。但超过100μF的大容量平滑用电容器,必须具备低阻抗,这些产品目前的主流却是导电性聚合物电解电容器。

*1.ESR(Equivalent Series Resistance 等效串联电阻):电容器阻抗的实际成分。

*2.ESL(Equivalent Series Inductor 等效串联电感):电容器带有的微小电感成分,谐振频率以上的频率领域的阻抗由ESL支配。

图2.多层陶瓷电容器的优势/劣势(出处:村田制作所)

如今,支持多层陶瓷电容器大容量化的技术正在不断革新,村田电子已经能保证1μm以下介质层的高精度叠加1000层以上的稳定量产生产技术及薄层化技术,此外,100μF以上的多层陶瓷电容器也正在量产中。

图3.100μF以上陶瓷电容器(3.2x2.5mm尺寸/330μF)的内部结构图

由于近几年数码设备使用的半导体不断低电压化,由DC偏压特性引起的容量下降的情况也在不断减少,因此数码设备也开始使用100μF以上的多层陶瓷电容器作为平滑用电容器。

目前,2.0x1.25mm/X5R/4V/100μF、3.2x1.6mm/X5R/6.3V/100μF、3.2x1.6mm/X5R/4V/220μF这三种规格的产品已经商品化。此外,多个项目的100μF以上的多层陶瓷电容器(最大容量:300μF)也已实现商品化。

图4.100μF以上多层陶瓷电容器的产品阵容(2015年8月)

在村田最新的产品阵容中,既有用于一般消费类市场的X5R型(工作温度范围:-55~85℃)产品,又有面向耗电量大、设备内部温度高的应用的X6*型(工作温度范围:-55~105℃),此外更大容量产品的开发也在计划中。

目前,为了确保数码设备使用的低电压及高速运转的半导体电源线的稳定性,需要控制由纹波电压及负载变动引起的电压变动。作为平滑用电容器,必须要达到100μF以上容量及低阻抗,此前市场的解决方案主要是使用导电性聚合物电解电容器。村田这次扩充了100μF以上的多层陶瓷电容器产品阵容,可以取代导电性聚合物电解电容器。

虽然多层陶瓷电容器的容量比导电性聚合物电解电容器要低,但仍然具有很强的可替代性。这是因为多层陶瓷电容器的阻抗及ESR很低,应对电压变化反应良好。图5是代表性的导电性聚合物钽电解电容器和多层陶瓷电容器的阻抗,ESR-频率特性。数码设备使用的电源IC开关频率在100kHz以上,从图中可以看出,相对于导电性聚合物钽电解电容器,多层陶瓷点容易不仅和它具有相同容量,而且容量比它低的产品,阻抗和ESR也很低。

此外,在谐振频率为高频时,与导电性聚合物钽电解电容器相比,多层陶瓷电容器的阻抗非常低,对高频静噪非常有用。

图5.阻抗/ESR-频率特性比较

村田使用PC上DDR用电源IC的评估基板进行了替换评估,评估电路及评估结果如图6所示。评估基板使用1.4V直流电压,初始状态下在2处使导电性聚合物钽电解电容器(7.3x4.3mm尺寸/2.0V/330μF/M偏差)作为平滑用电容器。然后,使用150μF及200μF(3.2x1.6mm尺寸/6.3V/M偏差)的多层陶瓷电容器替换导电性聚合物钽电解电容器,对纹波电压/尖峰电压、负载变化时的电压变化进行评估。本次评估已事先调整相位,确保了评估基板的稳定性。

图6.导电性聚合物钽电解电容器替换评估结果

从图中可以看出,使用多层陶瓷电容器时,虽然其标称容量值比导电性聚合物钽电解电容器低,但的确能改善纹波电压。这是因为开关频率处的多层陶瓷电容器阻抗及ESR很低,控制了由开关频率产生的电压变动,改善了纹波电压。此外,对于尖峰电压同样有改善作用。这是由于多层陶瓷电容器的ESL很低,控制了高频噪声,改善了尖峰电压。

但是,在电流变化很大的负载变动测试中,使用150μF多层陶瓷电容器时,电压变动结果并不理想。这与负载变动测试对电容器施加电压时的有效容量有关。测试所用的多层陶瓷电容器的标称容量值比导电性聚合物钽电解电容器低,DC偏压特性导致有效容量值更低,因此测试结果不理想。但是,用了容量较大的220μF产品,就能改善负载变动测试的评估结果。

由于低电压驱动的半导体十分普及,作为提供直流电源的电源IC的平滑用电容器,一般会使用具备大容量、低ESR特性的导电性聚合物电解电容器,但随着使用此类产品的服务器等设备对小型化、长期可靠性等性能越发重视,对平滑用电容器也产生了同样的要求。村田十分看重具备小型化、高可靠性,且有更低阻抗/低ESR/低ESL特性的100μF以上的多层陶瓷电容器的发展。如今市场交易很活跃,相信村田今后产品阵容的扩大将有助于电子设备市场的发展。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭