当前位置:首页 > 工业控制 > 工业控制
[导读]。其中,索尼In-cell面板已率先商用且终端产品也已上市;而苹果则与乐金显示(LGD)合作开发In-cell面板,并已于近期导入量产。至于三星则挟更精简的In-cell设计架构来势汹汹,并积极申请专利,同时致力发展相关触控IC

。其中,索尼In-cell面板已率先商用且终端产品也已上市;而苹果则与乐金显示(LGD)合作开发In-cell面板,并已于近期导入量产。至于三星则挟更精简的In-cell设计架构来势汹汹,并积极申请专利,同时致力发展相关触控IC,让In-cell市场战火愈演愈烈。

发明元素总经理李祥宇提到,In-cell强势挑战OGS触控的市场地位,传统触控模组厂须及早发展如悬浮触控等新应用,才不致让面板厂独揽大部分触控商机。

发明元素总经理李祥宇表示,单片玻璃(OGS)触控面临严峻的生产考验,包括触控IC设计、灵敏度、玻璃硬度、透光度与贴合等问题,均难以达到高阶行动装置的规格要求;因而促成面板厂、触控IC与液晶显示器(LCD)驱动IC业者携手转向更先进的In-cell触控方案研发。

现阶段,苹果、索尼、三星已展开In-cell商用部署或提出设计雏型,而其他如LGD、夏普(Sharp),东芝行动显示(TMD)、友达和奇美等也已急起直追。李祥宇指出,各家厂商的In-cell技术各有千秋,量产时程也不一。其中,索尼撷取On-cell和In-cell优点开发混合设计方案,生产良率已趋近90%;加上新思国际(Synaptics)、赛普拉斯(Cypress)均为其提供可搭配的触控IC,故该方案能率先跨越商用量产的门槛,并获索尼旗下Xperia和宏达电Evo系列手机采用。

索尼In-cell方案系将感应层(Rx)做在上玻璃的上方,并于LCD内导入Vcom电极驱动层(Tx)。藉由触控感测器分离式设计手法,透明导电膜(TCO)贴合和LCD制作良率可大幅提升;且因感应和驱动层相隔一片玻璃,互电容杂讯干扰较少,有利于触控IC、LCD驱动IC设计。不过,李祥宇强调,其触控功能表现将不及精纯的In-cell设计,亦难消除液晶电容产生的杂讯,导致触控反应延迟机率大增。

与此同时,iPhone5出货在即,苹果In-cell触控技术亦有重大突破。李祥宇分析,苹果In-cell采用三层立体结构,改善感测层和驱动层直接嵌入LCD的相互讯号干扰,但也垫高触控IC、LCD面板/驱动IC及软体演算法开发难度。目前苹果已自行克服触控IC及演算法问题,而乐金显示基于此设计的In-cell面板亦于日前出货,并透过TW 201215954、TW 201213942两项专利强化苹果In-cell触控对位精准度和驱动电位问题。

李祥宇进一步指出,由于三层立体结构过于复杂,预估面板良率仅能做到六至七成,且触控IC与LCD驱动IC须分时运作,整合困难,在在增加研发与生产投资负担。换言之,该设计只有苹果玩得起,恐难在其他品牌手机上实现。

至于三星则抢先业界申请pn-201229855专利,展开In-cell技术布局。相较其他业者,三星In-cell设计架构更为精简,其将LCD内的触控感测层、驱动层距离拉近至2~3微米,进而隔离Vcom电极闸线(Gate Line)与资料线(Data Line)讯号干扰,并屏除液晶电容杂讯,有助增进触控体验,且有利面板厂快速制造、缩减成本。惟其感测和驱动层距离太近,互电容影响过大将难以测出触控讯号,因而须投资庞大金额开发专用触控IC,量产还需一段时间。

不让三家大厂专美于前,发明元素亦已发展出新一代In-cell触控方案,最快预计在1年后导入商用量产。李祥宇透露,研究各家In-cell架构后发现,严重的互电容干扰问题系扼杀触控功能表现的罪魁祸首;因此,发明元素遂运用自电容(Self-Capacitance)设计方式,仅须在LCD内部导入感应层,以增强In-cell触控灵敏度和准确度。

李祥宇认为,自电容方案将是In-cell未来的发展方向,除可促进LCD更轻薄、透光率更高且产出容易外,还可将触控IC设计变动控制在一定程度内,降低先期投资成本。现阶段,苹果与三星也已积极投入自电容技术研发,特别是苹果在今年初与义隆的触控IC专利诉讼中,一改强硬态度,赔钱了事,就是为了取得义隆有关自电容运作的352号专利授权,加速研发新一代In-cell方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭