当前位置:首页 > 单片机 > 单片机
[导读] 英特尔® 现场可编程门阵列(FPGA)继续在市场中保持强劲的发展势头。配合英特尔®处理器,FPGA释放数据的巨大潜能,改造我们的世界,使从云到边缘的一系列实际用例的成长得以加速,体现出独特的价值。

 英特尔® 现场可编程门阵列(FPGA)继续在市场中保持强劲的发展势头。配合英特尔®处理器,FPGA释放数据的巨大潜能,改造我们的世界,使从云到边缘的一系列实际用例的成长得以加速,体现出独特的价值。

凭借出色的灵活性,FPGA 堪比半导体界的瑞士军刀。即使在发运给客户之后,这些设备也可以随时编程。FPGA 融合了逻辑、内存和数字信号处理模块,能够实时地实施所需的功能,具有极高的吞吐率。这使得 FPGA 适用于许多关键的云和边缘应用。

预计到 2020 年,物联网(IoT)将覆盖高达 500 亿台智能设备。全球人均智能设备持有数量约为 6 台。每人每天将生成约 1.5 GB 数据,而每台智能互联设备每天将生成多达 50 GB 的数据。FPGA 通过以实时、节能的方式存储、处理和分析海量数据,从而提取商业智能,为云和边缘计算提供了极大的优势。

最近,英特尔宣布英特尔 FPGA 将为 Microsoft Azure 提供强大的人工智能*,这是一个绝佳的示例。Brainwave* 项目奠定了基础,该项目是微软为实时人工智能(AI)打造的主要架构,之前用于必应* 智能搜索,现在在 Azure 和边缘中提供。

无论在云中还是在边缘,英特尔 FPGA 以低延迟和高能效的方式实现实时人工智能,无需将计算批处理打包(batching)至较小的处理元件中。例如,采用 FPGA 的人工智能能够实现极高的吞吐率,可以运行 ResNet-50 ——一款行业标准深度神经网络,要求近 80 亿次计算——而无需批处理。这可以在 FPGA 中实现,因为逻辑、DSP、嵌入式内存等可编程硬件支持轻松编写任何所需的逻辑功能,并针对其面积、性能或功率进行优化。由于该结构在硬件中实施,可以定制与执行并行处理,性能有望比传统软件或 GPU 设计方法高出数个数量级。

企业应用也使用相同的功能。戴尔 EMC* 和富士通* 正将英特尔 Arria® 10 可编程加速卡(PAC)应用于企业数据中心的现有服务器中。这些加速卡可在各个工作负载上与英特尔至强® 处理器协同工作,如实时数据分析、人工智能、视频转码、金融、网络安全与基因组。这些数据密集型工作负载面临着数据的爆炸式增长,FPGA 的实时和并行处理能力为它们带来了极大的优势。英特尔已构建了广阔的合作伙伴生态系统,以使用面向英特尔®至强®CPU和FPGA的加速堆栈在上述工作负载中开发整套解决方案。

Levyx*(一家由金融服务业前高管领导的大数据公司)使用基于 Arria®10 FPGA 的英特尔 PAC可编程加速卡 加速金融回溯测试,该测试经常用于帮助预测金融票据的计算交易策略的性能,包括各种证券、期权和衍生工具等。它是一个高度并行的数据与计算密集型工作负载,通常需要花费数小时,甚至数天来执行。借助 FPGA,Levyx 运行金融回溯测试的性能提升了 850%。图 1 中的数据显示了 20 个股票交易代码 50 次算法模拟的实际数据。结果令人惊讶。

图 1.Levyx 与英特尔的联合解决方案用于回溯测试工作负载的加速

在云中,由于企业需要处理大数据,FPGA 的应用规模已经达到了空前的水平。边缘出现了相似的标志性转变。研究报告显示,到 2020 年,来自 500 亿台智能互联设备的大多数数据均由机器(而非人类)生成。数据将来源于广泛的行业,包括制造、机器人、医疗保健和零售。

全球视频安防行业领先的解决方案提供商大华,以及加拿大国家科学研究院(NRC)正将英特尔 FPGA 嵌入其边缘应用中。

大华与英特尔通力合作,致力于使用 FPGA 加速它的 Deep Sense 服务器系列,以便在边缘实现实时推理,在由 100,000 张图像组成的数据库内进行面部对比。由于需要在带宽与功率受限的环境中快速执行面部识别,FPGA 技术被用作执行低延迟、节能型边缘推理的平台。

加拿大 NRC 正协助构建下一代平方公里阵列(SKA)射电望远镜,计划将其部署于偏远的南美与澳大利亚地区,对于天文研究而言,这种观察条件最为理想。SKA 射电望远镜将成为世界最大的射电望远镜,相比我们现在拥有的最好的射电望远镜,它的速度提升了 10,000 倍,图像分辨率提升了 50 倍。分辨率和速度的提升导致这些望远镜生成大量的图像数据,每隔几个月就要处理相当于互联网一年的数据量。

NRC 的设计将英特尔® Stratix® 10 SX FPGA 嵌入南非 SKA 望远镜项目的中央处理设施(CPF)中,从而在边缘实时地处理和分析收集到的数据。高速模拟收发器支持核心 FPGA 结构实时获取信号数据。随后并行化可编程逻辑,以执行针对功效、性能或两者优化的任何自定义算法,这使得 FPGA 成为在边缘处理大量实时数据的理想之选。

从云计算到边缘、物联网和我们的传统嵌入式市场,英特尔一直处于技术的前沿。其他人正在预测未来时,我们已经开始开创未来。可编程解决方案事业部的团队正在加速这一进程。

我非常期待未来与您分享英特尔 FPGA 如何推动 5G 无线、有线、小芯片技术等创新——释放数据的巨大潜能,改造我们的世界。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭