当前位置:首页 > 显示光电 > 显示光电
[导读]在Google Glass抬轿之下,矽基液晶(LCoS)跃居智慧眼镜微显示技术主流的态势已日益明朗,激励LCoS微显示光机模组及驱动晶片开发商加码投入新技术研发,以打造尺寸更小、功耗更低且解析度更高的解决方案,抢攻智慧眼镜

在Google Glass抬轿之下,矽基液晶(LCoS)跃居智慧眼镜微显示技术主流的态势已日益明朗,激励LCoS微显示光机模组及驱动晶片开发商加码投入新技术研发,以打造尺寸更小、功耗更低且解析度更高的解决方案,抢攻智慧眼镜应用商机。

新一代矽基液晶(LCoS)智慧眼镜微显示器(Microdisplay)方案将倾巢而出。在Google推出试用版Google Glass后,电子产业已掀起一股智慧眼镜发展热潮,包括索尼(Sony)、微软(Microsoft)与三星(Samsung)等科技大厂皆已着手进行研发,并预定于2014年发布第一代产品。根据IHS IMS Research预估,2013年全球智慧眼镜出货量将达十二万四千付,较2012年成长1.5倍;而2014年开始更将迅速飙升,并于2016年达到六百六十万付的规模。

Google Glass商业化后,可望加快LCoS技术在智慧眼镜市场的普及,再加上微显示光机模组系智慧眼镜成像的核心,因此微显示技术阵营业者皆积极抢进布局,新一代方案将轮番上阵。

打入Google供应链 晶典LCoS新方案送样

为赶搭Google Glass商机列车,美商晶典(Syndiant)已将旗下改良过的LCoS模组方案--SYL2030送交Google验证,改良版的SYL2030模组方案尺寸更小、耗电量更低,可符合Google Glass延长电池使用寿命的严苛要求。

美商晶典台湾分公司总经理陈志荣表示,目前LCoS技术较为成熟,仍为智慧眼镜显示模组方案的技术首选。

美商晶典台湾分公司总经理陈志荣(图1)表示,智慧眼镜将为关键元件商带来庞大的市场机会,其中微显示器占整体物料清单(BOM)成本高达30?35美元(表1),比重最高,早已是兵家必争之地。

据了解,除奇景光电旗下生产LCoS晶片与模组的子公司立景光电之外,晶典亦已将改良版的SYL2030模组方案送交给Google验证。

晶典原先的模组方案解析度为WVGA(850×480)、于每秒一百八十讯框下的耗电量达85毫瓦、显示面板对角线尺寸达0.21寸、5.4微米(画素)及高度为6毫米。 美商晶典亚洲区行销事业执行副总蔡重光指出,Google初期开发Google Glass的诉求是在显示器上呈现跑马灯的讯息,因此对于LCoS显示器的解析度要求并不高,但对于电池使用寿命的要求较为严苛,因此改良版的SYL2030模组方案解析度达720p,且尺寸和功耗较原先更为减少,惟规格尚无法对外公开。

1234

尽管禾鈶于先前已发布解析度达4K×2K的8寸晶圆背板(Backplane),不过蔡重光强调,该公司短期内不会跟进开发解析度高达4K×2K的LCoS模组方案,主因系尺寸与耗电量过大,恐难以符合Google Glass的要求。

打造更细致萤幕 数位LCoS革新智慧眼镜

另一家微显示光机模组业者禾鈶,则是抢先业界开发出采用脉冲宽度调变(PWM)切换电压的全数位架构LCoS微显示光机模组,其具备更高画面更新率及更高解析度优势,准备抢攻新一代配备更精细LCoS萤幕的智慧眼镜商机。

禾鈶系统平台部资深协理郭瑞申谈到,该公司已针对数位架构LCoS微显示光机模组,加紧投产可降低开发成本的ASIC控制器抢市。

禾鈶系统平台部资深协理郭瑞申(图2)表示,传统类比架构的LCoS微显示光机模组系透过类比电压控制每一画素,且将类比电压讯号储存在动态随机存取记忆体(DRAM)单元(Cell);相较之下,数位架构的LCoS微显示光机模组则是使用脉冲宽度调变切换两个电压控制画素,且将数位电压讯号储存于静态随机存取记忆体(SRAM)单元(Cell)中。

郭瑞申进一步指出,传统的类比架构LCoS微显示光机模组中,DRAM单元内的储存电容(Capacitor)易引发泄漏弊病,导致类比电压难精准控制,为产生残影的主因;而数位架构的LCoS微显示光机模组并无电容,因此不会有泄漏的问题,且面板上的数位电路比类比电路速度更快,因此可减少残影现象发生,更适用于诉求更精细画质的新一代的穿戴式装置。

据了解,禾鈶已推出采用全数位架构开发0.55寸(阵列对角线)、1,080p解析度;以及0.7寸(阵列对角线)、1,080p解析度;另于近期发布0.7寸(阵列对角线)、4K×2K解析度的LCoS微显示器,且画面更新率皆上看120MHz。

郭瑞申认为,尽管初期智慧眼镜仅显示跑马灯讯息,因此对于功耗要求更为严苛,但未来智慧眼镜势必将朝可播放高画质影片方向演进,可望带动可呈现更精细画面的数位架构LCoS微显示光机模组需求看涨。

郭瑞申更透露,该公司为加快数位架构LCoS微显示光机模组商用化,已采用特定应用积体电路(ASIC)开发出新一代的控制器,预计将于2014年第二季送样,至2014年第四季有望正式导入量产。

加速商用 智慧眼镜采轴上式架构

至于Google亦正戮力改良传统采用LCoS模组开发的Google Glass架构。Google将采用LCoS微显示光机模组搭配轴上式架构开发智慧眼镜,以改善偏振光的缺陷,并积极提高发光二极体(LED)背光源的亮度,以量产出性价比符合市场期待的智慧眼镜,加快扩大Google Glass的市场渗透率。

台北科技大学光电工程系副教授林世穆指出,Google Glass代工厂将面临如何调整LCoS微显示光机模组搭配轴上式架构的设计难题。

台北科技大学光电工程系副教授林世穆(图3)表示,不同于特殊教育训练(如飞行员等)应用选用不可透视设计的头戴式装置,根据Google申请的专利内容观之,其将采用LCoS微显示光机模组加上轴上式架构,开发出可大量商用化的可透视式智慧眼镜。

不过,据了解,LCoS微显示光机模组只接受单一线偏振,再加上搭配轴上式架构,内建的分光镜须使用四分之一波板控制偏振态,藉此将线偏振转为圆偏振,控制光路传达至眼睛,此将导致偏振光的弊病更加严重,亦即许多光源在未被使用前即先被消耗。

林世穆指出,为减少偏振光带来的光消耗,业界倾向于调高LCoS微显示光机模组中LED背光源的亮度,以增加进入人眼的光源,不过智慧眼镜系统开发商将随即面临耗电量增加的设计挑战。

1234

据悉,依据Google申请的专利内容所示,Google Glass的耗电量须低于10毫瓦,因此如何调整LCoS微显示光机模组搭配轴上式架构,以开发出符合Google Glass功耗要求的产品,未来将垫高代工厂的设计门槛。

事实上,除轴上式之外,智慧眼镜亦可采用LCoS微显示光机模组搭配离轴式架构开发,该架构毋需分光镜,而是采用自由曲面设计的菱镜,因此可避免光源分散以致进入人眼光源量下降的缺点。

然而,林世穆强调,尽管业界有厂商看好采用离轴式架构开发智慧眼镜,但自由曲面的菱镜必须靠电脑数值控制(CNC)车床车出所要的曲面,且非简单的数学面而是复杂的数学面,故变数繁多,难以验证,因此不易制造与提高良率。也因此,依照Google先前所推出的试用版Google Glass可见,未来仍将选用LCoS微显示光机模组搭配轴上式架构投产智慧眼镜。

诉求轻薄短小 智慧眼镜元件迈向整合

除LCoS微显示光机模组迭有进展之外,智慧眼镜系统的关键元件亦须开始升级,以与LCoS微显示光机模组相辅相承,且为达成更轻薄短小的外观要求,将开始朝更高整合度迈进,以加速扩大市场接受度。

吴世彬认为,未来智慧眼镜的应用将有无限想像空间,仍待产业界共同挖掘并打造出更酷炫的功能,以加速普及。

晶奇光电总经理吴世彬(图4)表示,从Google Glass的关键元件规格观之,未来智慧眼镜将朝轻薄短小、造型极致的工业设计、合宜人体的工学设计、顺畅的人机介面与操作系统及至少连续使用4小时且待机时间长达24小时演进,在在考验系统开发商的技术能量。

然而,吴世彬指出,为实现更多新颖的功能,智慧眼镜开发商于系统中,必须配备安谋国际(ARM)Cortex-A8核心、支援无线区域网路(Wi-Fi)、蓝牙4.0、通用序列汇流排(USB)及储存型快闪(NAND Flash)记忆体和第三代双倍资料率同步动态随机存取记忆体(DDR 3 SDRAM)。

也因此,吴世彬预期,未来智慧眼镜系统中,势必将会导入采用安谋国际核心开发的中央处理器(CPU),并整合Wi-Fi、蓝牙4.0、USB、行动产业处理器介面(MIPI)及记忆体,且将选用整合加速度计、陀螺仪及电子罗盘的九轴微机电系统(MEMS)感测器,以打造出更精巧型的方案。

Google Glass关键元件拆解图

1234

此外,新一代的智慧眼镜除仍将支援Android作业系统之外,亦将配备照相模组、语音命令(Voice Command)系统及触控板(Touchpad)。

瞄准智慧眼镜应用商机正快速兴起,微显示光机模组、处理器、感测器及驱动晶片等关键零组件开发商也已展开卡位动作,然其中LCoS微显示光机模组技术最为成熟,因此竞争亦格外激烈。随着LCoS微显示光机模组及系统其他关键元件不断推陈出新,智慧眼镜市场亦可望加速起飞。

1234
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭