当前位置:首页 > 通信技术 > 通信技术
[导读]从2G、3G到4G的应用,移动通信已经深刻地改变了人们的生活,但人们对更高性能移动通信技术的追求从未停止,为了应对未来爆炸性的数据流量增长、海量的设备连接和不断涌现的各类新业务,第五代移动通信(5G)系统将应运

从2G、3G到4G的应用,移动通信已经深刻地改变了人们的生活,但人们对更高性能移动通信技术的追求从未停止,为了应对未来爆炸性的数据流量增长、海量的设备连接和不断涌现的各类新业务,第五代移动通信(5G)系统将应运而生。5G将从“以技术为中心”向“以用户体验为中心”转变,应用场景将横跨移动互联网和物联网,达成人与万物智能互联的目标,实现“信息随心至,万物触手及”的愿景。

 

随着4G进入规模商用阶段,面向2020年及未来的第五代移动通信(5G)已成为业界关注热点,中兴通讯根据全球多个重要运营商合作的5G探讨和研究的经验总结,认为5G并不是一个单一的无线接入技术,也不是几个全新的无线接入技术,而是多种新型无线接入技术和现有无线接入技术(4G后向演进技术)集成后的解决方案总称。从某种程度上讲,5G是一个真正意义上的融合网络。相对于2G、3G以及4G技术来讲,5G的概念是一个综合的整体性范围,它主要是“现有无线技术演进和开发补充性的新技术”,目标为构建长期网络社会。从目前看,3G、4G、WiFi等无线接入技术都是5G的重要技术组成部分。

5G对承载的挑战

移动回传网络伴随着移动制式的不断改造而升级,从最初的SDH刚性管道,逐步过渡到全IP承载,并向SDN方向的弹性网络不断演进。同时,移动互联网和物联网进一步规模发展后,新业务的应用对5G技术指标将提出更高的要求。

1、大带宽:网络带宽的需求呈指数增长,单基站带宽将达到Gbit/s数量级。

2、低时延:物联网的应用对时延则提出了更高的要求,S1接口延时<2ms,X2接口延时<1ms,而4G的S1时延要求<10ms, X2时延要求<20ms。

3、超高精度时间同步:将采用MIMO和基站联合发送技术,要求提供超高精度同步技术。

4、SDN/NFV控制架构:实现网络能力的开放,提供全新的运营模式和盈利空间。

5、“网络切片”化:针对具体场景需求进行功能剪裁及资源分片,并在其上进行各自的业务应用、业务控制,实现面向业务场景的按需适配的网络架构,从而满足5G多样化场景的差异化需求。

6、网络承载前移:对于前传网的需求,从4G到5G的单扇区CPRI接口带宽约提升160倍(频谱带宽提升10倍,天线数提升16倍)至1.6T;而5G的时延将下降到100us以下,以CPRI接口方式建设前传网几乎不可能。这种情况下,承载方案将面临很大的挑战。

用户体验至上,提升产品价值

中兴通讯面临这条诱惑而又冒险的道路,毅然投入到自主研发进程中来,努力为5G用户提供冲浪般的网络体验,5G承载网部分的演进也会跟上时代的步伐。

设备端口数量和容量大大增加

为了减小X2接口时延,接入层网络从环网变成MESH化网络,需要更多的光纤资源,接入层设备需要支持更多的线路端口和更大容量。中兴通讯目前在ZXCTN 6000系列产品规划上支持最大32个10G,支持最大8个40GE和2个100GE接口。

在核心和汇聚层为了适应大容量的需求,需要设备支持线路400G接口,同时考虑到功耗和延迟的问题,分组和光的融合技术将成为关键,设备将支持L0-L3层功能,并通过SDN统一控制,计算出最优时延转发路径。中兴通讯当前研发的成熟POTN产品ZXCTN 9000-E系列和ZXONE 9700系列将大有用武之地,未来的网络需要实现L0到L3的业务级融合。

时延驱动路由算法技术将广泛应用

5G承载网接入容量大,网络拓扑呈现mesh状,时延的在线测量和基于时延的路由计算将是5G承载的基本需求。中兴通讯业界首个在SDN上实现时延驱动路由算法的厂家,时延驱动路由通过在线测量每对光纤跨端的延时值,可以计算出最小时延的端到端路由,并可以通过隧道OAM在线测量出路由的时延,如果时延值不满足X2的延时要求,会提示运营商告警,调整光缆的路由满足组网要求。

同时中兴通讯在同步技术上成果丰厚, 率先实现高精度的1588v2时间同步技术,并且通过和中国移动的长期合作,突破时钟商用瓶颈,提出1588v2 OAM技术解决方案,研究硬件在线监测设备,解决光纤非对称等问题,这些成果为5G超高精度同步技术研究提供了坚实基础。

SDN/NFV全面引入

5G时代,运营商需要一个统一运营、统一部署和统一操作的网络架构,RAN控制域、承载网控制域、核心网控制域三域协同,实现从“云、管、端”的全业务控制与运营。通过SDN/NFV技术的部署,优化数据传输路径,控制业务数据靠近转发云和接入云边缘,有效降低网络传输时延;通过构建面向业务的网络能力开放接口,满足业务的差异化需求并提升业务的部署效率;通过网络编排与管理系统针对具体场景需求对网络分片,实现一种面向业务场景按需适配的网络架构;引入SDN技术,构建面向业务的网络能力开放平台。

总结

5G时代是一个万物互联的时代,网络无时不在、无处不在。5G网络需求和网络架构相对4G也将发生很大变化,带宽、时延、时间同步等多方面功能和指标,都将给传送网带来巨大的挑战。中兴通讯承载网产品总工赵福川博士表示,面对5G的挑战我们已经做好了准备,在超大容量(400G/1T平台)、高精度时钟和SDN/NFV等方面已提前做好了布局,持续在移动回传网络设备深耕,继续保持在5G Backhaul时代的领先地位。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭