当前位置:首页 > 通信技术 > 通信技术
[导读]今天,25GbE交换机的128个接口正在部署中,在接下来的几年内会到达并超越64x 100GbE。但是,尽管数据中心正在向更高的端口密度、更高的端口速度和同质部署方向发展,但是更低的速度仍拥有广泛市场,比如10GbE继续被使用并仍具有经济效益...

在过去的三十年中,以太网已经发展成为所有行业的统一通信基础架构。每天都有超过三百万的以太网端口在部署,覆盖从FE到100GbE的所有速度。企业和运营商在部署时通常会使用盒式的交换设备和堆叠和高密度机箱式交换机的组合,来应对以太网的不断演进。然而,在过去的几年中,以太网发展态势正在持续改变。随着数据中心以太网部署和创新都在以最快的速度进行着,数据中心的以太网端口部署趋于一致,无论是10GbE、25GbE或50GbE,相同的以太网端口速度通过一个机架架顶(ToR)交换机被部署于每一个服务器上,然后聚集到多个CLOS层。最终目的是将尽可能多的以太网端口以最高的商用速度部署在以太网交换机上,并使其最经济和最节能。连接到ToR交换机的终端是服务器NIC(网络接口卡),它一般是市场上可用的最高速度(目前为10/25GbE,正在向25/50GbE方向发展)。

今天,25GbE交换机的128个接口正在部署中,在接下来的几年内会到达并超越64x 100GbE。但是,尽管数据中心正在向更高的端口密度、更高的端口速度和同质部署方向发展,但是更低的速度仍拥有广泛市场,比如10GbE继续被使用并仍具有经济效益。数据中心的创新带动更高密度和更高端口速度的发展,但很多细分市场仍需要具备较低端口速度和不同密度的解决方案。

BittWare最新开发的StreamSleuth:

正如BittWare提到,只有CPU而没有硬件加速是无法处理100Gbe的数据包交互的。而正式亮相于本次旧金山RSA大会的BittWare最新开发的StreamSleuth(流侦探),通过一个FPGA 助手,敏捷且迅速的将数据流分组了,此外,BittWare还表示,StreamSleuth使基于FPGA编程实现数据包处理机制时,没有任何FPGA编程的负担,也就是说,在编程的时候你并不需要精通Verilog或是VHDL这些硬件语言 ,就可以很方便的将FPGA的高性能应用到自己的应用中。

图1 StreamSleuth接口侧

正如BittWare的网络产品VP&GM发言人 Graig Lund解释,这并不是由一个随时可以重组的箱子组成的一个装置。用户往往需要或许也更想去量身定做它,比如说,在制作的时候,有的人想添加数据包过滤器,有的人想对数据交互的过程进行监视。用户在基于线速度是使用StreamSleuth做出任何想做的东西,而唯一不需要用户去做的,就是学习如何编程FPGA。尽管用户没有任何编程FPGA的经历,依然可以将FPGA的技术优势完美的应用的自己的应用中。也因此方便更多的网络或数据库工程师来使用BittWare的StreamSleuth。

正如Lund所说,相比以太网以前的低版本产品StreamSleuth是一个十分不同的创造物。一直以来,服务器都不可以直接处理100GbE的数据交互,而且此状态一直没有得到解决。而现在的网络管道却别服务器内部的I/O管道大得多,进入服务器的数据量成指数增长,同时也导致了CPU设计时不得不增加三级缓存来缓解数据堵塞。

或许我们听到过更糟糕的情况,对于一个服务器而言,如何减少网络阻塞,无疑是需要增加滤波器,很多滤波器,很多复杂的滤波器,比现在商品转化和防火墙器件更多的复杂滤波器。理论上说,需要用一种语言基于线速度快速完成标准的BPF/pcap滤波器的实现,类似一个基于高度并行FPGA的数据包发动机。

当然,以上这种做法对于减轻100Gbe的线路速率也是有作用的,但是目前的硬件并做不到,也没办法用软件来实现。最终的出路在于FPGA,所以BittWare的基于FPGA数据处理的StreamSleuth成功的实现了用户想要达到的效果。

以软件实现的防御并不可以抵挡100Gbe线路速率的DoS,但是基于FPGA加速实现的数据包处理器可以。所以我们也明白了StreamSleuth内部的FPGA到底做了什么工作,它重配置了数据包滤波器,使得加载和路由变得平衡。同时,应用BPF/pcap语言为自己的需求编程,并通过GUI或APIs烧录到StreamSleuth 100Gbe数据包处理器中,就可以实现自己的需求。而此数据处理器中集成的是一款Xilinx Virtex UltraScale+ VU9P FPGA 板卡。

下图就是BittWare的StreamSleuth的板卡内部结构:

总结:

无论是视频流处理还是数据流处理,现如今,只要需要用到加速器来实现的应用已经越来越多的通过基于FPGA来进行硬件加速,不仅可以真正意义上的并行,加快运行速度,也可以降低CPU执行软件的压力。可见,基于FPGA来硬件加速将会是加速器未来的发展方向。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭