当前位置:首页 > 智能硬件 > 半导体
[导读]富士通半导体和SuVolta宣布,通过将SuVolta的PowerShrink低功耗CMOS与富士通半导体的低功耗工艺技术集成,已经成功地 展示了在0.425V超低电压下,SRAM(静态随机存储)模块可以正常运行。这些技术降低能耗,为即将出现

富士通半导体和SuVolta宣布,通过将SuVolta的PowerShrink低功耗CMOS与富士通半导体的低功耗工艺技术集成,已经成功地 展示了在0.425V超低电压下,SRAM(静态随机存储)模块可以正常运行。这些技术降低能耗,为即将出现的终极“生态”产品铺平道路。技术细节和结果 将会在12月5日开始在华盛顿召开的2011年国际电子器件会议(IEDM)上发表。

从移动电子产品到因特网共享服务器,以及网络设备,控制功耗成为增加功能的主要限制。而供应电压又是决定功耗的重要因素。之前,CMOS的电源电压 随着器件尺寸减小而稳定下降,在130nm技术结点已降至大约1.0V。但在那之后,技术结点已缩小到28nm,电源电压却没有随之进一步降低。电源供应 电压降低的最大障碍是嵌入的SRAM模块最低工作电压。

结合SuVolta的Deeply Depleted Channel (DDC)晶体管技术 – 该公司的PowerShrink平台组件之一 – 与富士通半导体的尖端工艺,两家公司已经证实通过将CMOS晶体管临界电压(VT)的波动降低一半,576Kb的SRAM可在0.4伏附近正常工作。该项 技术与现有设施匹配良好,包括现有的芯片系统(SoC)设计布局,设计架构比如基体偏压控制,以及制造工具。

背景

遵循微缩定律,在130nm技术结点CMOS电源供应电压逐步降低到大约1.0V。但是,尽管工艺技术已经由 130nm继续缩小到28nm,电源电压却还保持在1.0V左右的水平。由于动态功率与供应电压的平方成正比,能耗已经成为CMOS技术的主要问题。电压 降低止步于130nm结点的原因是多处波动来源,包括随机杂质扰动(RDF)。RDF是器件及工艺波动的一种形式,由注入杂质浓度或晶体管通道内掺杂原子 的扰动引起。RDF导致同一芯片上不同晶体管的临界电压(VT)出现偏差。

已见报道的两种特殊结构可以成功减小RDF:ETSOI和Tri-Gate – FinFET技术的一种。但是,这两种技术都非常复杂,使得他们很难与现有设计和制造设施匹配。

SuVolta的DDC晶体管

图1所示为SuVolta的DDC晶体管在富士通半导体的低功耗CMOS工艺中的应用。晶体管截面电子显微图(TEM)显示晶体管在平面基体硅结构上制造而成。

 

图1. DDC晶体管截面

降低SRAM最低工作电压

对于大多数芯片,降低供应电压的限制来自于SRAM。如图2所示,富士通半导体和SuVolta展示了在低至0.425V电压下仍然能够正常工作的 SRAM模块。由于SRAM是降低供应电压最大的挑战,该项成果意味着DDC将使得多种基于CMOS的电路在0.4V左右运作成为现实。

图2显示了576k SRAM宏模块在不同电压下的良率。良率由所有比特都通过的宏模块数目计算而得。

 

图2. 576k SRAM良率

总结与未来计划

DDC晶体管的工艺流程已经成功建立。所制造的DDC晶体管显示VT波动比基准流程改善了50%,并且产出在0.425V电压下仍能运作的SRAM,充分证明了DDC晶体管有能力将供应电压降低到0.4V左右。

富士通半导体将发展这项技术并积极回应客户在消费电子产品,移动设备及其他领域对于低功耗/低电压运行的要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭