当前位置:首页 > 半导体 > 半导体
[导读] 最新的「倾斜离子注入」(TII)制程据称能够实现比当今最先进制程更小达9nm的特征尺寸...

最新的「倾斜离子注入」(TII)制程据称能够实现比当今最先进制程更小达9nm的特征尺寸...

美国柏克莱实验室(Berkeley Lab)的研究人员日前发表最新的「倾斜离子注入」(tilted ion implantation,TII)制程,据称能够降低制造先进芯片的成本、缩短研发时间,同时实现比当今最先进制程更小达的9奈米(nm)特征尺寸。

近年来,随着芯片制造成本和复杂度的快速增加,延缓了摩尔定律(Moore’s law)的进展,该实验室的研究结果显示利用这项新技术有望降低芯片的制造成本和复杂度。 不过,目前还不清楚芯片制造商是否会采用这项技术。

「我们利用氩离子选择性地损坏光罩薄层的某些部份,」在最新一期《IEEE电子组件处理》(Transactions on Electron Devices;TED)发表研究论文的第一作者Peng Zheng说:「它能自对准且按照现有垒加光罩的特征倾斜,所以并不存在现有双微影蚀刻(Litho-Etch-Litho-Etch;LELE)方法的问题。 无法对准一直是这种LELE途径的致命伤。 」

他说,相较于目前在16nm及更先进制程节点广泛使用的自对准双图案(SADP)微印技术,这种新途径能够将成本降低50%,同时提高达35%的传输速率。

「与需要多层沉积和蚀刻制程的SADP相较,这种注入制程非常便宜,」而SADP还需要能够承受150℃以上处理的相对昂贵材料。

在该研究报告中提及的9nm特征尺寸,意味着TII可用于产生18nm至20nm的间距。 相形之下,台积电(TSMC)在最近的国际电子组件会议(IEDM)发表的论文指称,目前,其7nm制程、M0层的最小间距为40nm。

早在2015年时,柏克莱实验室就曾经向该研究计划的两家资助商——应用材料(Applied Materials)和Lam Research介绍了这种技术,同时也在去年的SPIE先进微影技术会议(SPIE Advanced Lithography conference)上展示了原型结果。


图1:TII技术能产生小至9nm的特征尺寸

探索量产应用之路


图2:利用TII途径(a)沉积薄氧化物和硬式光罩(HM)层,并以微影技术在HM上印刷特征。 然后,(b)以相反的角度注入氩离子。 蚀刻掉氧化物层的损坏部份,并移除HM(c、d)。 待移除氧化物(e,f)后,再以图案化的氧化物层作为HM,对其下的IC层进行图案化

由于这种TII技术使用「相当标准的CMOS制程...... 我很确定有些晶圆厂已经对其进行了尝试,因为它比SADP技术更容易。 不过,由于这个产业极其竞争,预计要到顺利实现量产之后,他们才会透露相关细节,」他说。

不过,在采用这项技术以前,都必须先获得柏克莱实验室的技术转移办公室授权,目前他们也正在申请专利,他接着说。

至于后续的研究方向,研究人员正在探索如何使用该技术图案化微型孔洞。 他们还将探索如何使用这项技术协助放松当前在16nm及更先进制程节点使用SADP所要求的严苛设计规则。 此外,他们也会继续尝试新材料。

该论文还有两位值得注意的共同作者——Axcelis首席组件科学家Laxard Rubin,以及Berkeley副校长Tsu-Jae King Liu,他同时也是FinFET与SADP技术的共同发明人。 而第一作者Peng Zheng,最近取得了柏克莱大学的博士学位,即将在英特尔(Intel)从事先进制程研发。

至于这项技术本身,市场观察机构VLSI Research总裁G.Dan Hutcheson评论说:「这绝对是令人印象深刻的研究成果,」但他也指出了几个可能阻碍该技术导入的商业现实。

Hutcheson说,「成本大幅降低,虽然令人印象深刻,但并不足以让业界公司『弃旧换新』——只需看看绝缘层上覆硅(SOI)的情况就清楚了。 」他指的是SOI技术经漫长市场化之路的过程。

此外,「还有许多悬而未决的风险问题,例如良率以及对于基底层的损坏程度等,」他并补充说,业界芯片制造商「在涉及实际建置时,通常会变得很保守。 」

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭