当前位置:首页 > 半导体 > 半导体
[导读]随着时间的沉淀和技术的发展更新,半导体芯片封装技术自问世至今,已经演变出数百种,不同技术有各自的应用情形。

随着时间的沉淀和技术的发展更新,半导体芯片封装技术自问世至今,已经演变出数百种,不同技术有各自的应用情形。

大多数应用将需要更通用的单元件封装用于集成电路和其他元件,如电阻器,电容器,天线等。然而,随着半导体行业开发出更小,更强大的器件,“系统级封装”(SiP)解决方案正成为首选,所有元件都放在一个单独的封装或模块中。

虽然封装类型可以很容易地分为引线框架,基板或晶圆级封装,但选择适合您所有要求的封装要复杂一些,需要评估和平衡应用需求。要做出正确的选择,您必须了解多个参数的影响,如热需求、功率、连接性、环境条件、PCB组装能力,当然还有成本。

对于封装类型的评估,以下是一些关键要求:

应用类别

最终目标应用是决定了封装该如何选择。您的应用是低成本的消费设备还是高成本的工业ASIC?它会在炎热的环境中运行吗?您是开发片上系统,还是将ASIC作为系统中的一个关键组件?这些问题将帮助您决定封装的类型 - 您是否可以使用晶圆级或芯片尺寸封装,或者标准的,更容易获得的BGA或QFN型封装。

高端级:要求通常与具有大量连接(高引脚输出)的高速,高功率芯片有关。这些器件需要先进的封装要求,以满足小焊盘间距,高速信号和去耦的需求,这可以通过FC-BGA(倒装芯片BGA)或更新的封装(如嵌入式晶圆级球栅阵列(eWLB)实现。 )。

中端级:在中档组通常需要封装可以解决热增强和使用成本效益高的塑料封装技术-通常选择BGA和QFN。该组的最高端是芯片级和晶圆级封装,适用于系统封装或多芯片模块封装。

入门级:包括高容量应用,其中成本是主要的驱动器,而不是性能。例如,用于笔记本和移动应用的设备通常需要小尺寸的晶片级和芯片尺寸封装。

引脚数和 I/O

在确定封装要求时,任何设备的输入和输出连接的数量和位置是要考虑的关键因素。

引脚数高:如果您正在寻找一个非常高的引脚数,比如1000引脚封装,那么您最好的选择可能是标准的BGA封装,它提供了这样的I/O能力,因为整个封装尺寸可以达到50-60平方毫米。

引脚数低:对于低引脚数,比如50个引脚,您可能选择QFN或WLCSP封装。但是,WLCSP对封装内的散热有限制。在存在发热(例如,快速切换)或需要良好信号接地的情况下,由于“内置”金属基垫,QFN是更好的封装选择。

布局:另一个参数是I/O的位置。如果I/O位于芯片周围的外围,那么只要芯片和封装焊盘中有足够的表面积,就可以快速,简单和可靠地进行引线键合。如果I/O在不同区域的芯片表面上散布,那么从芯片中心引出的引线难以接通,那么倒装芯片封装可以直接连接到封装的基板上,这通常是多层PCB,不会出现芯片重叠的问题。

热管理

热管理是优化芯片性能的关键封装因素。例如,BGA封装通常可以提供更低的成本/改进的热管理解决方案,因为它的大小,因为它有更大的面积可用来散热。就热管理解决方案而言,较小的房地产芯片可能更贵,需要一个外部散热器或其他冷却选项。

BGA封装有两个热垫选项,如导电vias或内置金属基板,可以实现足够的热管理。热增强BGA封装的一些选项可以在其上内置金属帽,从而在IC器件和金属帽之间建立导热路径,从而提供良好的散热。

QFN封装的设计是这样的,他们有一个坚实的金属模具垫作为封装的基础,模具是粘结在一起的。这使得很好的散热从硅模具通过PCB。

热管理是优化芯片性能的关键封装因素。例如,BGA封装由于其尺寸,通常可以在封装内提供更低成本/改进的热管理解决方案,因为它具有更大的可用于散热的面积。

BGA封装 可选配两个导热垫,例如导电通孔或内置金属底板,可实现充分的热量管理。热增强型BGA封装的一些选择可以在其上构建金属盖,其在IC器件和金属盖之间建立热传导路径,这提供了良好的散热。

QFN封装 的设计使得它们具有固体金属芯片焊盘作为封装的基部,芯片与之结合。这样可以实现从硅芯片到PCB的非常好的散热。

贴片材料 使用导热粘合剂(如Sliver填充的环氧树脂,而不是普通环氧树脂)将芯片粘合到基板上,有助于消除热量。此外,还有更新的技术,如银烧结技术 - 一种具有高工作温度,高导热性和导电性的互连方法。这些材料通常适用于QFN封装,但由于封装结构的原因,在BGA封装中效果不佳。

芯片尺寸和晶圆级封装 这些封装中的热管理主要在芯片背面或芯片尺寸封装中在芯片的裸露顶侧完成。

高速信号/RF

RF,无线和高速数字设计具有影响封装选择的特定要求。封装内互连的参数效应可显着降低信号速度和频率。

引线键合与倒装芯片 在RF器件中,关键设计考虑因素涉及电感,电容和电阻,这些因素受进出器件信号速度的影响。这些问题也影响封装选择,主要是在倒装芯片和引线键合互连之间。倒装芯片将提供更好的RF性能,并能够以更低的电感达到更高的频率。另一方面,引线键合可以在每个RF输入或较高频率的输出处添加随机可变电感。

封装布局。在RF频率,信号沿表面而不是导体传播。因此,组装封装的方式对设备具有重要影响。例如,高速放大器芯片,RF晶体管和二极管通常不能放入“标准”塑料封装中,因为封装材料影响芯片工作的速度。因此,这种芯片应该进入腔QFN或BGA封装。

高频信号(1GHz及以上)可能要求互连的布局具有隔离的信号路径,称为“接地信号接地”互连。这里对每个信号I/O的两个接地连接的要求将影响封装尺寸和布局。

此外,对于高速ASIC,信号电平和时序将受到它们行进的导体长度的影响。例如,如果您使用的是BGA封装,并且导致一个点的导线较长而导致下一个导线的导线较短,则信号的时序差异会很大。必须通过更多地考虑封装基板的初始设计以适应高速RF器件来克服这一点。

BGA衬底介电材料也是RF芯片的关键因素。例如,高性能液体聚合物基板(如Rogers层压板)比标准FR4 PCB材料更适合用作RF设计用BGA封装的基板。

 


在选择半导体芯片封装技术时,应当以自身需要为依据,切不可盲目选择。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭