当前位置:首页 > > 厂商动态
[导读]作者:LitchllResNet模型前言我们自己训练一个ResNet模型,并在以下三个环境中进行性能的对比。AIStudio CPU: 2 Cores 8GB MemoryAIStudio GPU: V100 16GB VMemEdgeboard训练模型模型使用AIStudio 进行训练,RESNET、M

作者:Litchll

ResNet模型

前言

我们自己训练一个ResNet模型,并在以下三个环境中进行性能的对比。

AIStudio CPU: 2 Cores 8GB Memory

AIStudio GPU: V100 16GB VMem

Edgeboard

训练模型

模型使用AIStudio 进行训练,RESNET、MOBILE训练和预测代码有兴趣的同学请手动移步到百度AI社区相关帖子里查看详细内容。百度AI社区——EdgeBoard板块。

测试结果

我们执行预测,忽略掉预处理的速度,仅仅计算模型前向传播的时间。

对于AIstudio平台,我们计算以下代码的运行时间

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

对于Edgeboard上面的PaddleMobile,我们计算以下代码的运行时间

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

以下为两个模型的评测数据

ResNet

Edgeboard:

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

CPU:

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

GPU:

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

Mobile_Net

Edgeboard:

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

GPU:

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

CPU:

 

图片1.png

总结:

下表为两个模型预测速度的对比,从中来看,其速度相对于V100的GPU甚至还有一定的优势,让人难以相信。个人的分析是由于以下几个原因

Paddle-mobile较为启动预测,与AIstudio的完整版Paddlepaddle相比有启动效率上的优势,AIstudio启动预测可能较慢。

整个预测模型batch size相当于1,发挥不出GPU的优势。

部署预算按三年算的话,GPU V100价格大概是10万,CPU 1万, EdgeBoard 5千,性价比还是蛮高的。如果大家对Edgeboard感兴趣的话,可自行到百度AI市场购买体验,我在这里不做过多赘述。

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

我在进行模型预测的时候,使用钳表对功率进行了大概的估计(条件有限),钳表的读数在0.6A-8A之间变化。结合使用的12V适配器,我大概估计Edgeboard的功耗为8W.

以8W的功耗,在单张图片的预测速度上面领先了几十倍功耗的GPU与CPU。Edgeboard的表现还是令我比较惊喜。本来想继续移植一个前段时间的大尺度的分割网络Unet进行尝试,想继续试试他最大可以跑的模型大小,但似乎Edgeboard目前还不支持分割,存在了一定遗憾。

另外我在进行调试的时候,发现过有几个发布版本的固件不是很稳定,有些op有些问题。还发现了Edgeboard在我的两台笔记本电脑上网络不是很稳定,经常出现相互无法ping通的情况,更换PC后正常,暂时还没发现为什么。

Edgeboard是我第一款接触的嵌入式神经网络加速设备。Paddle-mobile也是我接触的第一个移动端神经网络框架,也是我接触的第一个基于FPGA实现的加速框架。从我了解这个框架到现在仅仅不到半年的时间,已经发布了多个模型转换工具,降低了开发难度,并且支持EasyDL这种方式。虽然目前仍然有一些不成熟的坑需要填,不过相信在软件的迭代下面,它能成为一个很好的嵌入式原型设计平台。

Mobile-SSD模型

这次我们自己训练一个Mobilenet-SSD模型,增加了不同输入维度的情况下,模型运行效率的对比

AIStudio CPU: 2 Cores 8GB Memory

AIStudio GPU: V100 16GB VMem

Edgeboard

训练模型

模型使用AIStudio提供的官方工程进行训练,Mobilenet-SSD训练和预测代码有兴趣的同学请手动移步到百度AI社区相关帖子里查看详细内容。百度AI社区——EdgeBoard板块。

运行预测

我们执行预测,忽略掉预处理的速度,仅仅计算模型前向传播的时间。

对于AIstudio平台,我们计算以下代码的运行时间

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

对于Edgeboard上面的PaddleMobile,我们计算以下代码的运行时间

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

以下图片为预测结果,由于时间有限,没有很细致去训练模型,仅仅对比了模型运行的速度。

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

下表为模型在不同维度下的预测速度的对比,从中来看,其速度相对于V100的GPU基本处于同一个数量级,远远领先与CPU

 

百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测

在之前的文章里我们提到,本来想继续移植一个前段时间的大尺度的分割网络Unet进行尝试,想继续试试他最大可以跑的模型大小,但似乎Edgeboard目前还不支持分割,所以我们更换了目标检测网络进行尝试。在mobilenet-SSD这个模型上,Edgeboard最大可以跑到700*700的输入维度,并且能保持在16fps之上(不包含输入图像的语出过程),基本上具有实时性。

之前我提到的,在我的两台笔记本电脑上网络不是很稳定,经常出现相互无法ping通的情况,目前经过试验之后,发现问题为板子的网卡在与不支持千兆的网卡进行通信时候,不能正确的协商,仍然使用千兆模式,使用以下命令固定为百兆即可正常连接

ethtool -s eth0 speed 100 duplex full

Edgeboard是我第一款接触的嵌入式神经网络加速设备。Paddle-mobile也是我接触的第一个移动端神经网络框架,也是我接触的第一个基于FPGA实现的加速框架。从我了解这个框架到现在仅仅不到半年的时间,已经发布了多个模型转换工具,降低了开发难度,并且支持EasyDL这种方式。虽然目前仍然有一些不成熟的坑需要填,不过相信在软件的迭代下面,它能成为一个很好的嵌入式原型设计平台。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭