当前位置:首页 > 汽车电子 > 汽车电子
[导读]全球知名半导体制造商ROHM针对EV / HEV引擎等核心系统和采用车载传感器的汽车电子系统,开发出具有压倒性优势EMI耐受力*1)(以下简称“抗噪性能”)的车载用接地运算放大器“BA8290xYxx-C系列”(BA82904YF-C / BA82904YFVM-C / BA82902YF-C / BA82902YFV-C)。

<概要>

全球知名半导体制造商ROHM针对EV / HEV引擎等核心系统和采用车载传感器的汽车电子系统,开发出具有压倒性优势EMI耐受力*1)(以下简称“抗噪性能”)的车载用接地运算放大器“BA8290xYxx-C系列”(BA82904YF-C / BA82904YFVM-C / BA82902YF-C / BA82902YFV-C)。

“BA8290xYxx-C系列”融合了ROHM的“电路设计”“布局”“工艺”三大模拟技术优势开发而成,相比一般产品在所有频段的输出电压变动±3.5%~±10%,本产品仅为±1%以内,是抗噪性能具有绝对优势的运算放大器。配置于输出传感器等微小信号的元器件后段,可不受噪声影响而放大信号,因此不再需要以往采用滤波器作为对策的噪声设计,有助于减少系统的设计工时并提高可靠性。

本产品已于2017年9月开始出售样品(样品价格500日元/个,不含税),计划于2018年6月开始暂以月产100万个的规模投入量产。前期工序的生产基地为ROHM Wako Co., Ltd.(日本冈山县),后期工序的生产基地为ROHM Integrated Systems(Thailand)Co., Ltd. (泰国)。

<背景>

近年来的汽车电子系统中,使用ECU(Electric Control Unit)和传感器来控制并优化温度、加速度和电流等内部状态,从而改善油耗,并增加安全性。

而另一方面,随着汽车的电子化、高密度化日益加速,噪音问题日益严重,已然成为处理微小信号的传感器等的重大难题。另外,在汽车开发过程中,由于噪音问题无法单独进行评估,只能在全部组装完毕后进行噪音测试。然而,一旦组装完毕后发生噪音问题,将导致重大的设计修改。因此噪声设计一直需要分外小心谨慎。

ROHM针对这些噪音课题,充分运用ROHM模拟设计技术和独有的双极工艺等整合生产优势,在世界首创无需抗噪音设计电路的运算放大器。

 

<特点详情>

1. 世界首款无需抗噪音设计的车载运算放大器

“BA8290xYxx-C系列”凝聚ROHM的“电路设计(新抗噪音对策电路)”“布局经验(多年积累的模拟布局)”“工艺(独有的双极工艺)”三大独有模拟技术开发而成。相比一般产品在所有频段的输出电压变动±3.5%~±10%,本产品仅为±1%以内,实现极具优势的抗噪性能。该抗噪性能可削减一般产品不可欠缺的外置抗噪音部件(电源、输入、输出的3个CR滤波器),从而不再需要进行在系统中发挥重要作用的车载传感器应用的噪声设计,成功解决了汽车电子系统开发中的噪音难题,有助于减少设计工时并提高可靠性。

另外,预计今后ROHM还会将实现超强抗噪性能的运算放大器技术延伸到工业设备市场。

2. 支持全球汽车行业标准

“BA8290xYxx-C系列”不仅支持全球汽车行业可靠性标准AEC-Q100,而且与一般产品相比,在消耗电流(相比一般产品的0.7mA仅为0.5mA)和偏置电压(相比一般产品的±7mV仅为±6mV)方面表现优异,产品阵容采用标准的运算放大器引脚配置和普通的表面贴装封装及通道数,仅需简单替换有噪声隐患的现有产品即可。

<产品阵容>

产品编号

通道数

电源电压

消耗电流

输入偏置

电压

输入电压范围

工作温度范围

封装

BA82904YF-C

2ch

3.0V 36V

0.5mA

±2mV (Typ.)

±6mV (Max.)

VEE ~ VCC-1.5V

-40 125

SOP8

BA82904YFVM-C

MSOP8

BA82902YF-C

4ch

0.7mA

SOP14

BA82902YFV-C

SSOP-B14

※所有产品型号均支持汽车行业可靠性标准AEC-Q100

<应用例>

适用于

■EV / HEV的逆变器 ■引擎控制单元 ■自动变速器

■电动助力转向系统 ■车灯 ■汽车空调

■组合开关 ■EV充电器 ■汽车导航系统

等具有需要注意噪声的电子电路的所有汽车电子系统。

<术语解说>

*1) EMI(Electromagnetic Interference: 电磁干扰)耐受力

EMI耐受力是表示对周围产生的噪声的耐受性的指标。当EMI耐受力较低时,周围产生的噪声可能会导致元器件或系统的误动作,因此需要采用滤波器(电容器、电阻等)和屏蔽(金属板)来进行噪声对策。反之如果EMI耐受力较高,则不再需要顾虑噪声影响,这将非常有助于减少噪声设计工时和精力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭