当前位置:首页 > 电源 > 功率器件
[导读]本设计中的并行式多频段LNA为单个LNA,但能同时工作在不同频段下且放大所需频段的信号。

    近年来,随着无线通信技术的蓬勃发展,可兼容多种移动通信系统标准的新一代移动终端的研究正逐渐成为热点。要实现多频段的移动终端接收系统,需要解决的首要问题就是如何实现位于该系统第一级的低噪声放大器LNA的多频段化。传统的方法是将多个单频段的LNA并联起来使用,但会造成较大的功耗,占用较大的芯片面积,增加成本,而且随着接收标准的不断增多,该方法最终将不可行;另外一种实现多频段的方式是采用开关式LNA,但其只能工作于一个频段下,当希望能同时工作于多个频段时,该方法也将不适用;还可以采用宽带LNA来实现多个频段的放大,但同时也会放大其他频段的干扰信号。本设计中的并行式多频段LNA为单个LNA,但能同时工作在不同频段下且放大所需频段的信号。

电路设计

    该多频带LNA总体电路如图1所示,由于1.8GHz、1.9GHz和2GHz频段很靠近,因此考虑设计一个0.9/   1.9GHz的双频段LNA,以1.9GHz为中心频率,适当增大其带宽,使其覆盖1.8~2GHz,最终实现所需要的四频段LNA。

图1  整体电路图


1 噪声分析

    高频下MOSFET的噪声主要包括漏电流噪声和栅电流噪声。对图1中带有源极电感的共源MOSFET进行噪声分析,得噪声系数为:

     (1)


    其中,Rs为信号源电阻;Zt=Zg+Zs+Zgs,Zg和Zs为连接到栅极和源极的阻抗,Zgs是连接输入管栅漏两端的阻抗,一般为1/jωCgs;,为MOSFET的栅电流噪声, ,为漏电流噪声。


    在功耗限制和阻抗匹配条件下,输入级品质因数Qs≡1/ωCgsRs在3.5~5.5之间时噪声系数能达到最小值,如式(2)所示。可以看到,理论上噪声只能在一个频率点下达到最优,而不可能同时在多个频率下具有最小值。随着频率ω的增大,噪声将变大。因此对于0.9GHz和1.9GHz两个频段而言,为了达到噪声系数的平衡,选择在噪声较差的高频段1.9GHz处进行噪声匹配,由此可确定Cgs大约为 0.48pF,对应的输入管尺寸为650μm(W)×0.35μm(L)。


Fmin≈1+2.3ω/ωT     (2)

2 输入阻抗匹配

    与传统的单频段LNA相比,本LNA的输入阻抗匹配网络必须同时在多个频段下匹配到50Ω。图2(a)所示为采用源端电感负反馈结构的输入阻抗匹配网络,其等效电路如图2(b)所示。其包括两个LC槽,其中,L0′=Lg+Ls,C0′=Cgs。输入阻抗可表示为:


(3)

图2(a) 输入阻抗匹配网络

图2(b) 输入阻抗匹配网络等效电路

    根据阻抗匹配条件,可得出在多个频率下,输入阻抗的实部和虚部需满足以下条件:


gm1ls/Cgs=50Ω             (4)


(5)


    求解式(5),可得两个不同的ω值,ω1和ω2。因此,该输入网络在两个频段ω1和ω2下均可满足阻抗匹配的要求。


(6)


    本设计中ω1和ω2的期望值分别为0.9GHz和1.9GHz,满足这两种频率下谐振的元件值L0、L0’、C0、C0’将不止有一组。而在实际设计所采用的工艺库中,电感值是一系列分离值,因此必须结合实际电感值进行选取。最终实现的元件值是L0=7.23nH,C0=2.5pF,Lg=10.5nH,Ls=1.14nH。

3 输出阻抗匹配

    输出阻抗网络的设计与输入阻抗网络的设计类似,应考虑在多个频段下实现良好的匹配,同时输出级的设计还要满足增益的要求。图3(a)为本设计中的输出网络,其分为三部分, A1部分提供大的输出阻抗,以实现较高的增益;A2和A3共同实现双频带,A2负责阻抗下变换,将阻抗实部匹配到50Ω,A3则对虚部进行共轭匹配。

图3(a) 输出网络

图3(b) 等效输出网络


    将输出网络等效为如图3(b)所示的形式,可得:


               (7)


                (8)


    其中,Q1=ωL1/R1。           

                   
    在输出网络的设计中,R1’越大,增益越大,Q1也越大,但此时R1就越小,输出网络带宽变小。由于高频段的设计是以1.9GHz为中心频率,输出网络的设计需使其具有足够的带宽覆盖1.8~2GHz,因此与L1串联的电阻R1的选取要使增益与输出网络带宽达到一定的平衡。

    最终实现的元件值为L1=5.58nH,R1=15Ω,C1=1.6pF,L2=4nH,C2= 5.14pF,L3=8nH,C3=16.2pF。

仿真结果

    基于TSMC 0.35μm SiGe BiCMOS射频工艺库,采用Cadence的SpectreRF仿真器对所设计的多频段LNA进行仿真,得到0.9/1.8/1.9/2GHz四频段下LNA主要性能指标如图4所示。

图4(a)S21指标

图4(b)S11和S22指标

图4(c) 噪声系数NF


    图4(a)为LNA的增益S21,由图可看出,在感兴趣的频段内,LNA的增益均大于10dB,且带内波动控制在0.4dB左右。图4(b)所示为LNA输入反射系数S11和输出反射系数S22,与0.9GHz处相比,1.9GHz附近的频带宽度被适当的展宽,覆盖了1.8~2GHz,所需频段处S11和S22均在-10dB以下。在本设计中为了达到高低频下噪声的平衡,考虑在高频处进行噪声匹配。图4(c)为LNA的噪声系数NF和最小噪声系数NFmin,结果表明在所希望的高频处(约1.8GHz)确实实现了噪声的最优化,同时四个频段下的噪声系数都较为平衡,均小于3.3dB。

    表1综合列出了各频段下的仿真性能指标。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭