当前位置:首页 > 电源 > 功率器件
[导读]摘要:阐述了相移PWM技术在级联型逆变器中的应用,并对相移PWM中各单体逆变器的相移与级联型逆变器输出频谱之间的关系进行了分析。当相移量为Ts/m时,输出谐波频率为原有的m倍。仿真和实验结果证实了分析的正确性。

摘要:阐述了相移PWM技术在级联型逆变器中的应用,并对相移PWM中各单体逆变器的相移与级联型逆变器输出频谱之间的关系进行了分析。当相移量为Ts/m时,输出谐波频率为原有的m倍。仿真和实验结果证实了分析的正确性。

关键词:级联型逆变器;多电平逆变器;相移

 

1    引言

    多电平逆变器由于可降低器件的开关应力,优化输出波形,提高转换效率等优点,目前在中大功率场合得到越来越广泛的应用。多电平逆变器目前主要包括二极管嵌位型、电容嵌位型、多单元级联型等[1]。级联型逆变器将多个逆变单元串联起来,易于扩展,主要缺点是每个单元需要隔离的直流电源。为减少隔离电源数量,单元电路结构可以不完全相同。这种由不同单元串联而成的逆变器称为混联型逆变器。当电源电压不同时,可以增加输出电平种类[2]。串联单元本身还可以是一个多电平逆变器,如二极管嵌位型逆变器[3]。图1是一个由H逆变桥和五电平逆变器串联组成的混联型逆变器。级联型又可分为带隔离直流电源和带隔离输出变压器2种。分别如图2和图3所示。

图1    混联型逆变器示例

图2    带隔离直流电源的多重结构

图3    带有输出隔离变压器的多重结构

    多电平逆变器输出正弦波的调制方法主要有2种,一种是基于基频的调制方法,使逆变器输出阶梯波逼近正弦波,可分为空间矢量控制和谐波选择消除,通过合适的选择阶梯波的时间和幅度,可有选择地减少或消除特定的开关谐波;另一种是基于高频的调制方法,通过高频调制,使得谐波频率更高,更易于滤除,可分为空间矢量调制和SPWM2种方式。

    多电平逆变器中随着级数的增加,空间矢量的个数呈几何次数增加,而数量较多的矢量可获得更好的控制效果。SPWM很易于从两电平方式扩展到多电平方式。多电平SPWM主要有多载波SPWM、相移SPWM和注入3次谐波提高母线电压利用率法。多载波SPWM将多个相邻三角波与正

    弦参考信号进行比较得到控制脉冲,适用于二极管嵌位和级联型逆变器。相移SPWM技术适用于级联型逆变器[4][5][6],通过将相位不同的载波信号与正弦参考信号比较得到触发脉冲。图4显示了一个三重级联型逆变器相移SPWM产生原理。相移SPWM可以提高输出波形中含有的谐波频率,从而使之更易于滤除。本文分析了各单体逆变器之间的相移与输出频谱之间的关系,并通过仿真和实验验证了分析结果。

图4    三重级联型逆变器相移SPWM产生原理图  [!--empirenews.page--]

2    相移量与输出频谱之间的关系

    对于单体逆变器,其驱动信号产生原理与两电平SPWM逆变器完全相同。而对于不同的单体逆变器,输出的基波存在一个相位差。

    设逆变器由m个单体SPWM逆变器组成,第i个SPWM逆变器输出电压为ui,则串联输出总电压为

    u0=ui(1)

    设单个逆变器输出单相双极性SPWM波,且波形正负半周期镜像对称,即

    ut)=-ut+π)(2)

    为简化计算,设波形在正负周期内前后1/4周期以π/2为轴线对称,即

    ut)=u(π-ωt)(3)

    则可用傅立叶级数表示为[7]

    ut)=ansinnωt(4)

    设逆变器的一个开关周期为Ts,各个逆变器输出时延为Ts/m,则输出电压用傅立叶级数表示为

    ut)=ansin(5)

由于

    sin=[sinnωtcos(nω)-sin(nω)cosnωt]

        =sinnωtcos(nω)-cosnωtsin(nω)

        =sinnωtcos(n2π)-cosnωtsin(n2π)(6)

式中:T为逆变器输出波形基波的周期,当基波为工频50Hz,T=20ms;

      Ts为开关周期,当开关频率fs为几十至几百kHz,Ts为几μs至几十μs。

    当n=1时,可近似认为

    cos(n2π)=m,

    sin(n2π)=0(7)

    可见,串联后输出电压中基频成分为线性叠加。

    当n=m时,有

    cos(n2π)=m

    sin(n2π)=0(8)

    可见,串联后输出电压中频率f=mfs的成分线性叠加。

    因此,我们可以得知,m个输出依次时延Ts/m的SPWM逆变器串联,其输出的基频成分幅值为线性叠加,输出含有f=amfs(a=1,2,...)的谐波,谐波的幅值亦为线性叠加。

    因此,若多重逆变器由m个单体逆变器组成,逆变器载波频率为fs,则第i个单体逆变器的时延为: [!--empirenews.page--]

    t=(9)

    可见,通过串联叠加,输出频谱中所含谐波成分更加高频化,可大大减小滤波电感的体积。

3    仿真与实验

3.1    基于MATLAB的仿真实验

    采用MATLAB对两个时延为Ts/2的单相SPWM叠加得到双重SPWM波的情况进行仿真,条件为:开关频率fs=2.5kHz,调制比为0.8,时延Ts/2。频域分析结果如图5所示。

(a)    双重叠加输出电压的频谱分布    (b)    单个逆变器输出电压的频谱分布

图5    不同方式下输出电压的频谱分布

    可见叠加后的波形中开关谐波频率增加1倍,基频和谐波成份都得到叠加,证实了以上分析结果。

3.2    电路实验

    采用CM15-12H型的IGBT建立带高频输出变压器的单体全桥逆变器,逆变器为二重串联叠加结构,带小型滤波电感。控制方式采用相移PWM控制,采用ADSP2181为数字控制器,输出两路相互有时延的SPWM控制信号。输入电源由4节12V蓄电池串联提供,输出为220V,50Hz交流。

    当开关频率为12kHz,时延为τ=42μs,负载为纯阻性,滤波输出波形如图6所示。波形的THD<3%。

图6    实验的输出波形

4    结语

    本文对相移PWM的输出频谱进行了分析,得出了时延与输出频谱之间的关系。仿真与实验的结果证实了分析的正确性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭