当前位置:首页 > 电源 > 功率器件
[导读]1 引言在实际运行中如果变频器的主控制器死机或者复位将引起变频器停止输出,使负荷电动机停机,这将给电厂造成巨大的损失。针对目前使用最广泛的级联多电平变频器,本文采用基于fpga的变频器惯性输出技术,即fpga在

1 引言

在实际运行中如果变频器的主控制器死机或者复位将引起变频器停止输出,使负荷电动机停机,这将给电厂造成巨大的损失。针对目前使用最广泛的级联多电平变频器,本文采用基于fpga的变频器惯性输出技术,即fpga在检测到主控制器异常时,根据记忆值维持变频器的输出直至控制器恢复正常,将大大提高变频器的稳定可靠性。
 

  2 级联多电平变频器工作原理

  级联多电平变频器又称单元串联多电平变频器或完美无谐波变频器,通过串联若干低压功率单元的方式来实现高压输出,电压电流的谐波含量低,对电网谐波污染较小,输入功率因数较高,并且不必采用输入谐波滤波器和功率因数变换器,在实际中应用较为广泛[1]。以6kv变频器为例,每相由6个额定电压为577v的功率单元串联,三相共有18个功率单元,分别由输入隔离变压器的18个二次绕组供电,18个二次绕组分3组,每组之间存在20°相位差,形成相当于18脉冲整流。使得电压总畸变率只有3%,电流总畸变率小于4%。其结构图如图1所示。

  图1 级联式6kv变频器结构图

  功率单元的结构如图2所示,三相交流电整流后经滤波电容滤波形成直流母线电压,逆变器由4个耐压为1700v的igbt模块组成h桥式单相逆变电路,通过pwm控制,在输出端得到变压变频的交流输出,输出电压为单相交流0~577v,频率为0~50hz。旁路功能是一种当设备出现故障后断开故障点而使设备继续正常运行功能。当需要旁路时,通过晶闸管v导通,旁路该功率单元输出,平常正常工作时,晶闸管v处于关断状态。

  图2 级联式变频器功率单元结构图

  3 基于fpga的相位移载波spwm调制方法

  相位移载波技术的基本原理是使用几个1.2khz三角载波信号和一个正弦参考信号(每相) 比较,产生spwm信号。将三角载波进行合适的移相,可以消除特定次数的谐波。以a相为例,正弦调制波和三角载波如图3所示。六级功率单元使用的正弦调制波的幅值和相位相同,而每级功率单元的三角载波形状相同相位不同,各载波间相角依次移动2π/6即60°,这样就可以有效抑制输出电压和电流变化率。h桥单元左右桥臂的调制波相位相反,有助于提高整个系统的等效载波比。试验已证明n级单元串联时的等效载波频率为三角载波的频率的2n倍,并且在该种方式控制下的直流电压利用率高。

  图3 相位移载波调制原理图 [!--empirenews.page--]

  目前所使用的变频器一般将上述比较过程放在cpu中完成,当cpu遇到干扰复位或程序出错的时候,变频器将停止输出。由fpga来完成三角波和正弦波的比较过程将很好的解决这个问题,利用cpu的强大计算能力实时计算参与比较的正弦波,利用fpga高速度的时钟精确产生移相三角波,然后在fpga中进行比较输出。fpga脉冲发生器及惯性输出原理#e#4 fpga脉冲发生器及惯性输出原理

 

 由fpga实现相位移载波spwm调制的结构框图如图4所示。fpga与cpu的接口由数据总线、地址总线和控制总线实现,cpu上电后首先对fpga的控制寄存器进行初始化,设置spwm的输出周期,各路三角波的初始相位和幅值。地址发生器根据周期寄存器的值产生ram读取地址,输出数据进入缓存。在每个三角波的谷值处给cpu一个中断,通知cpu更新数据,在每个三角波的峰值处从ram中读取数据进入缓存。cpu每次更新数据的同时也更新地址寄存器,指明当前输出数据的地址长度,此地址长度决定了变频器输出的频率。多路比较器实时将缓存数据与对应三角波进行比较产生spwm波形,光纤信号组合器将每一个功率单元所需信号即左臂信号、右臂信号、闭锁信号、旁路信号组合编码成一路串行信号送入光接口。

  图4 fpga实现变频器惯性输出结构图

  在fpga内部实现了一个看门狗(控制器状态检测器)对cpu进行监视,cpu在正常工作时,在每ms之内必须给fpga一个喂狗信号,当检测器在2ms没有检测到此信号变化则给地址发生器一个信号,地址发生器则根据当前的地址寄存器产生地址从双口ram中读取数据,从而实现cpu死机时变频器输出的相位和频率能够继续,即具有惯性输出功能。fpga实现惯性输出时,状态寄存器保存当前输出频率值和故障标志,以供cpu复位之后读取。

  5 verilog设计与仿真

  根据图4的结构框图应用verilog语言进行设计,选用lattice的xp3系列fpga进行设计,与传统的基于sram的fpga不同,latticexp3器件不需要外接引导存储器,因此能提供单芯片的解决方案,从而减少了电路板面积,并简化了系统制造过程。以控制状态检测器为例,当fpga在一段时间内检测到cpu的喂狗信号没有改变时,给出cpu异常信号,改变地址控制器的输出策略。其仿真图形如图5所示。

  图5 cpu状态检测器仿真时序图

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭