当前位置:首页 > 电源 > 功率器件
[导读]我们知道每种电容都有它的频率特性,那么AVX 钽电容的频率特性是怎么样的呢?AVX 钽电容随着频率的增加有效电容的值会减小,直到共振达到(通常视0.5 - 5MHz 的之间该评级)。

我们知道每种电容都有它的频率特性,那么AVX 钽电容的频率特性是怎么样的呢?AVX 钽电容随着频率的增加有效电容的值会减小,直到共振达到(通常视0.5 - 5MHz 的之间该评级)。

除了共振频率的设备变得感性。除了100kHz 的电容继续下降。下面以AVX 贴片钽电容E型的220UF 10V 规格为例,来说明钽电容的频率特性AVX 钽电容温度特性曲线。

 

频率特性" />

 

在介绍AVX 钽电容的温度特性曲线前,我们必需对以下两个基本概念有所认识:

额定容量(CR)

这是额定电容。对于钽OxiCap?电容器的电容测量是在25° C 时等效串联电路使用测量电桥提供一个0.5V RMS120Hz 的正弦信号,谐波与2.2Vd.c.

电容公差

这是实际值的允许偏差电容额定值。

AVX 钽电容的温度特征。

钽电容器的电容随温度变化而发生变化。这种变化本身就是一个小的程度上依赖额定电压和电容的大小。从下面的温度曲线图上可以看出在工作温度范围内,钽电容和铌电容的容量会随着温度的上升而上升。

 

 

损耗角正切(TAN)。

这是一个在电容器的能量损耗的测量。它表示,为棕褐色,是电容器的功率损耗其无功功率分为一组指定的正弦电压频率。也用的术语是功率因数,损耗因子和介电损耗。 COS(90 - )是真正的功率因数。 “使用测量进行测量谭桥梁,提供一个0.5V RMS120Hz 的正弦信号。

耗散与温度的关系

耗散系数随温度变化的典型曲线表演。这些地块是钽和OxiCap 相同电容器。

耗散因数测量的切线损耗角(TAN),以百分比表示。测量DF 是开展测量桥梁供应一个0.5V RMS120Hz 的正弦信号,免费谐波与偏见2.2Vdc. DF 值是温度和频率依赖性。注意:对于表面贴装产品所允许的最大DF 值表示的收视率表是很重要请注意,这些限额会见了由组件后基板上焊接。

耗散因数的频率依赖性

随着频率的增加损耗因数所示钽和OxiCap 庐电容器的典型曲线相同的AVX 钽电容的阻抗(Z)。

这是电流电压的比值,在指定的频率。三个因素促成了钽电容器的阻抗;半导体层的电阻电容价值和电极和引线电感。在高频率导致的电感成为一个限制因素。温度和频率的行为确定这三个因素的阻抗行为阻抗Z.阻抗是在25° C 和100kHz.

AVX 钽电容的等效串联电阻ESR.

阻力损失发生在一切可行的形式电容器。这些都是由几种不同的机制,包括电阻元件和触点,

粘性势力内介质和生产旁路的缺陷电流路径。为了表达对他们的这些损失的影响视为电容的ESR. ESR 的频率依赖性和可利用的关系;ESR=谭δ2πfC 其中F 是赫兹的频率,C 是电容法拉。ESR 是在25 ° C 和100kHz 的测量。ESR 是阻抗的因素之一,在高频率(100kHz和以上)就变成了主导因素。从而ESR 和阻抗几乎成了相同,阻抗仅小幅走高。

AVX 钽电容的阻抗和ESR 的频率依赖性。

ESR 和阻抗都随频率的增加。在较低频率值作为额外的贡献分歧阻抗(由于电容器的电抗)变得更加重要。除了1MHz 的(和超越电容的谐振点)阻抗再次增加由于电感,电容的。

典型ESR 和阻抗值是类似的钽,铌氧化物材料,从而在相同的图表都有效钽电容和OxiCap电容器。

AVX 代理谈钽电容的阻抗与温度的关系和ESR.在100kHz,阻抗和ESR 的行为相同,随着温度的升高下降的典型曲线

钽电容的浪涌电压

AVX 钽电容能承受的电压和电流浪涌能力是有限的,这是基于所有电解电容的共同属性,一个值够高的电应力会穿过电介质,从而破坏了介质。例如一个6 伏的钽电容在额定电压运行时,有一个167 千伏/毫米电压的电场。因此一定要确保整个电容器终端的电压的决不会超过规定的浪涌电压评级。作为钽电容负极板层使用的半导体二氧化锰有自愈能力。

然而,这种低阻是有限的。在低阻抗电路的情况下,电容器可能被浪涌电流击穿。降压的电容,增加了元件的可靠性。额定电压使用上常见的电压轨迹,低阻抗钽电容在电路进行快速充电或放电时,保护电阻建议为1Ω/ V.如果达不到此要求应使用钽电容器降压系数高达70%.在这种情况下,可能需要更高的电压比作为一个单一的电容。 A 系列组合应被用来增加工作电压的等效电容器:

例如,两个22μF25V 系列部分相当于一个11μF50V 的一部分。

是指电容在很短的时间经过最小的串联电阻的电路33Ohms(CECC 国家1KΩ)能承受的最高电压。浪涌电压,常温下一个小时时间内可达到高达10 倍额度电压并高达30 秒的时间。浪涌电压只作为参考参数,不能用作电路设计的依据,在正常运行过程中,电容应定期充电和放电。

不同温度下浪涌电压的值是不一样的,在85 度及以下温度时,分类电压VC 等于额定电压VR,浪涌电压VS 等于额度电压VR 的1.3 倍;在85 到125 度时,分类电压VC 等于额定电压VR 的0.66 倍,浪涌电压VS 等于分类电压VC 的1.3 倍。

钽电容的反向电压

AVX 钽电容的反向电压是有严格的限制的,具体如下:

在1.0V 25° C 条件下最大为10%的额定直流工作电压

在0.5V 85° C 条件下最大为3%的额定直流工作电压

在0.1V 125℃条件下最大为1%的额定直流工作电压

反向电压值均以钽电容在任何时间上的最高电压值为准。这些限制是假设钽电容器偏振光在其大多数的正确方向工作寿命。他们的目的是涵盖短期逆转如发生在开关瞬态极性期间的一个印象深刻的波形的一小部分。连续施加反向电压会导致两极分化,将导致漏电流增大。在在何种情况下连续反向应用电压可能会出现两个类似的电容应采用与负端接背回配置连接在一起。在大多数情况下这种组合将有一个标称电容的电容的一半无论是电容。在孤立的脉冲条件或在最初几个周期内,电容可能的方法完整的标称值。反向电压等级的设计盖小级别游览得天独厚的条件弄错极性。引用的值是不打算覆盖连续的反向操作。

钽电容的叠加交流电压(Vr.m.s.)------又称纹波电压

这是最大的r.m.s.交流电压;叠加一个特区电压,可应用到一个电容。在华盛顿的总和电压和峰值叠加A.C.电压不得超过该类别电压。

钽电容的成型电压。

这是在阳极氧化形成的电压。 ”这个氧化层的厚度是形成电压成正比一个电容器,并在设置额定电压的一个因素。

 

钽电容的成型电压" />
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭