当前位置:首页 > 电源 > 功率器件
[导读]我们在之前章节谈论了使用氮化镓场效应晶体管在驱动器及版图方面的考虑因素从而提高性能。本章我们会探讨在高频降压转换器使用最优版图并在1 MHz频率开关时可实现高于96%效

我们在之前章节谈论了使用氮化镓场效应晶体管在驱动器及版图方面的考虑因素从而提高性能。本章我们会探讨在高频降压转换器使用最优版图并在1 MHz频率开关时可实现高于96%效率。

降压转换器纵然具备最优电路版图,如果没有把电源器件的反向传导降至最低,不必要的功率损耗仍然可以发生。这种体二极管的反向传导在上方器件与下方器件传导时的死区时间内出现,我们将阐释这个影响效率的原因及提供可简单地把损坏降至最低的方法。

死区时间所带来的影响

在降压转换器当上方及下方器件同时处于断开状态时(死区时间),能源将从输出电感器以反方向流过下方的氮化镓场效应晶体管。从图1降压转换器的典型开关波形图可以看到体二极管在死区时间的反向导通时段。在这个周期内,体二极管的正向压降将引致功率损耗,并以此程式代表:

其中ID是二极管电流、VF是体二极管正向压降及tD是每段开关时间TSW的二极管总传导时间(两侧)。当开关频率上升,死区时间的开关损耗的影响将更形重要,尤其是在大电流、低输出电压的应用中,因为更高损耗及更低输出功率级增大了死区时间内二极管传导损耗对效率的影响。

.

图1:降压转换器开关波形图展示死区时间的二极管传导

对于降压转换器来说,死区时间并不自然而然地相等于二极管的传导损耗。在开关节点的后缘,如果死区时间足够,负载电流将从开关节点自换向至接地,这将允许底部器件实现零电压开关(ZVS)而开启,从而减少开关损耗。自换向的速度要看负载电流及它对死区时间的影响(见图2)。长死区时间在小电流时将允许自换向,因此提高轻负载效率,但在重负载时将增加二极管传导及损耗。相反地,短死区时间将把满负载效率提升至最高点,但因轻负载具零电压开关损耗从而增加开关损耗。对于前缘来说,很少依赖负载电流,而把死区时间减至最短可把二极管传导降至最少。

图2:负载电流对下降缘二极管传导的影响与恒常死区时间比较。红圈部分代表场效应晶体管体二极管在传导时的区域

加入肖特基二极管

图3展示了一个工作在1 MHz频率、12 V转1.2 V的降压转换器,只要在每个死区时间距离增加5 ns(每周期的二极管总传导的10 ns),与优化后的死区时间相比(没有二极管传导),可以降低转换器效率超过一个百份点。在这低压下,加入一个肖特基二极管可有效地减低氮化镓场效应晶体管(eGaN FET)的二极管损耗。这是因为氮化镓场效应晶体管具备三个重要特性:

1。没有反向恢复损耗,就算部分电流换向至肖特基二极管也可减少有效的二极管压降及减少损耗。

2。氮化镓场效应晶体管的较高二极管正向电压使它的二极管电压与肖特基二极管的电压之间的差别更大,从而加快电流换向速度。

3。具备低封装电感而配以具低电感的肖特基二极管,将把电流换向环路电感降至最低,也加快电流换向的速度。

从图3测量出的效率可看到如果使用正确的尺寸,增加一个肖特基二极管可去除潜在的二极管传导损耗达70%。就算尺寸过小,电流仍然可以换向至肖特基二极管及提升效率。

图3:在降压转换器效率方面,1 A肖特基二极管对死区时间损耗的影响

(VIN=12 V, VOUT=1.2 V, Fs=1 MHz, L=150 nH, eGaN FET: T: EPC2015 SR: EPC2015, MOSFET: T: BSZ097N04LSG SR: BSZ040N04LSG).

把死区时间缩至最短

如果加入肖特基二极管可改善降压转换器的效率,把死区时间传导降至最少可更有效。最理想是采用自适应式死区时间方法来控制依赖负载电流的死区时间,但只可以在非常高频、低压应用中可实现这个要求速度及复杂度的方法。一般来说,比较简单的方法是在开关节点的上升缘及下降缘选择恒定的死区时间(如图2(b)所示)。这个简易方法提供与自适应方法一样的重负载效率,但在大约15%额定负载以下会降低效率。宜普公司的开发板配备简单的恒定死区时间电路,使用逻辑及RCD延时snubbers(如图4所示)。实现这个死区时间也无需高侧驱动器调节。

图4:基于氮化镓场效应晶体管、采用恒定死区时间的简单电路图

实验性研究结果

宜普公司为实现恒定死区时间控制及最优版图,构建了演示板EPC9107,给28 V转3.3 V降压转换器并工在1 MHz频率及具15 A最高输出电流。我们构建该转换器版图与功率模块差不多,在1/4 立方英寸的尺寸内包含全功率级。 图5展示开关节点波形图,并展示在28 V输出电压、只有10%的过冲时在一纳秒范围内的开关速度。前缘死区时间减至最短至差不多接近零时把约10 A负载的后缘死区时间也减至最短。这是把轻负载效率的影响减至1 A以下之同时在满负载时增加二极管传导时间约4纳秒。 图6展示这个降压转换器的效率,并与具相同规格、基于MOSFET器件的零电压开关功率模块进行比较。虽然零电压开关可提高效率及工作在2/3开关频率,基于MOSFET的转换器仍然比基于氮化镓场效应晶体管的硬开关降压转换器的效率低出1.5 %至3%。

图5:使用氮化镓场效应晶体管、28 V转3.3 V、15 A、工作于1 MHz频率的降压转换器的开关节点波形图

图6:基于氮化镓场效应晶体管的硬开关降压转换器与基于MOSFET器件软开关降压转换器的效率的比较

结论

本章讨论了死区时间对高频降压转换器的影响及如何缓和影响的方法。我们实现了一个简单的方法,使用恒定死区时间,工作在1 MHz频率的基于氮化镓场效应晶体管的降压转换器与基于MOSFET器件的软开关降压转换器相比,前者工作在接近相同的开关频率下可大大改善效率。

eGaN是宜普电源转换公司的注册商标。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭