当前位置:首页 > 电源 > 功率器件
[导读]连接/参考器件连接/参考器件ADL5380400 MHz至6,000 MHz正交解调器ADA4940-2超低功耗、低失真ADC驱动器AD7903双通道、差分、16位、1 MSPS PulSAR 12.0 MW ADCADR435超低噪声

连接/参考器件

连接/参考器件

ADL5380

400 MHz至6,000 MHz正交解调器

ADA4940-2

超低功耗、低失真ADC驱动器

AD7903

双通道、差分、16位、1 MSPS PulSAR 12.0 MW ADC

ADR435

超低噪声XFET 5.0 V基准电压源,具有吸电流和源电流能力

评估和设计支持

电路评估板

ADL5380评估板(ADL5380-EVALZ)

ADA4940-2评估板(ADA4940-2ACP-EBZ)

AD7903评估板(EVAL-AD7903SDZ)

系统演示平台(EVAL-SDP-CB1Z)

电路功能与优势

图1中的电路可精确地将400 MHz至6 GHz RF输入信号转换为相应的数字幅度和数字相位。 该信号链可实现0°到360°相位测量,900 MHz时精度为1°。 该电路采用一个高性能正交解调器、一个双通道差分放大器以及一个双通道、差分、16位、1 MSPS逐次逼近型模数转换器(SAR ADC)。

 

 

图1. 用于幅度和相位测量的简化接收器子系统(未显示所有连接和去耦)

电路描述

正交解调器

正交解调器提供一个同相(I)信号和一个正好反相90°的正交(Q)信号。 I和Q信号为矢量,因此,可以用三角恒等式计算接收信号的幅度和相移,如图2所示。 本振(LO)输入为原始发射信号,RF输入为接收信号。解调器生成一个和差项。 RF和LO信号的频率完全相同,ωLO = ωRF,因此,结果会过滤掉高频和项,差项则驻留于直流。接收信号的相位(φRF)与发送信号的相位(φLO)有所不同,该相移可表示为φLO - φRF。

真实I/Q解调器具有许多缺陷,包括正交相位误差、增益不平衡、LO-RF泄漏等,所有这些都会导致解调信号质量下降。要选择解调器,首先确定RF输入频率范围、幅度精度和相位精度要求。

ADL5380解调器采用5 V单电源供电,可接受400 MHz至6 GHz范围内的RF或IF输入频率,从而成为接收器信号链的理想选择。根据配置,可提供5.36 dB电压转换增益,ADL5380的差分I和Q输出可以把2.5 V p-p差分信号驱动至500 Ω负载。 在900 MHz时,其噪声系数(NF)为10.9 dB,一阶交调截点(IP1)为11.6 dBm,而三阶交调截点(IP3)为29.7 dBm,动态范围出色;而0.07 dB的幅度平衡和0.2°的相位平衡则可实现杰出的解调精度。ADL5380采用高级SiGe双极性工艺制造,提供4 mm × 4 mm、24引脚小型LFCSP封装。

ADC驱动器和高分辨率精密ADC

ADA4940-2全差分双通道放大器具有出色的动态性能和可调输出共模电压,是驱动高分辨率双通道SAR ADC的理想之选。ADA4940-2采用5 V单电源供电,以2.5 V共模电压提供±5 V差分输出。 根据配置可提供2倍增益(6 dB),并把ADC输入驱动至满量程。RC滤波器(22 Ω/2.7 nF)可限制噪声,减少来自ADC输入端容性数模转换器(DAC)的反冲。ADA4940-2采用专利的SiGe互补双极性工艺制造,提供4 mm × 4 mm、24引脚小型LFCSP封装。

AD7903双通道、16位、1 MSPS SAR ADC具有出色的精度,FS增益误差为±0.006%,失调误差为±0.015 mV。AD7903采用2.5 V单电源供电,1 MSPS时功耗仅为12 mW。使用高分辨率ADC的主要目标是实现±1°的相位精度,尤其是当输入信号的直流幅度较小时。 ADC所要求的5 V基准电压源由ADR435低噪声基准电压源产生。

 

 

图2. 利用正交解调器测量幅度和相位

图注:

Let ωRF=ωLO difference term at dc:令ωRF=ωLO差项(直流)

Sum term gets filtered:和项被过滤掉

常见变化

使用ADL5387 30 MHz至2 GHz正交解调器可将电路的频率范围扩展至较低频率。

根据具体的应用,可能需要在解调器和ADC之间使用放大器,也可能不需要。ADL5380能够与AD7903直接接口,因为这两个器件的共模电压是兼容的。 如果使用共模电压不在解调器范围内的另一个ADC,那么就需要用一个放大器,以最少的功率损失实现电平转换。

AD798x和AD769x系列ADC可用作AD7903的替代器件。[!--empirenews.page--]

电路评估与测试

如图3所示,接收器子系统利用ADL5380-EVALZ、ADA4940-2ACP-EBZ、EVAL-AD7903SDZ和EVAL-SDP-CB1Z评估套件实现。 这些电路组件针对子系统中的互连优化。 两个高频锁相输入源提供RF和LO输入信号。

表1总结了接收器子系统中各个组件的输入和输出电压电平。 在解调器的RF输入端,11.6 dBm的信号产生的输入在ADC满量程范围的-1 dB之内。 表1假定ADL5380的负载为500 Ω,转换增益为5.3573 dB,电源增益为- 4.643 dB;假定ADA4940-2增益为6 dB。 该接收器子系统的校准程序和性能结果将在后续章节讨论。[!--empirenews.page--]

表1. 图1中的输入和输出电压电平

 

 

接收器子系统误差校准

接收器子系统有三个主要误差源: 失调、增益和相位。

I和Q通道的各个差分直流幅度与RF和LO信号的相对相位存在正弦关系。 因此,I和Q通道的理想直流幅度可以通过以下方式计算得到:

电压ICHANNEL = 最大I/Q输出 × cos(θ) (3)

电压QCHANNEL= 最大I/Q输出 × sin(θ) (4)

随着相位移过极化坐标,理想状况下,有些位置会产生相同的电压。 例如,I(余弦)通道上的电压应与+90°或-90°相移相同。 然而,对于本应产生相同直流幅度的输入相位,恒定相移误差(不受RF和LO的相对相位影响)会导致子系统通道产生不同结果。 这种情况如图4和图5所示,其中,当输入应为0 V时,结果产生了两个不同的输出码。这种情况下,-37°的相移远远大于含有锁相环的真实系统的预期值。 结果,+90°实际上表现为+53°,-90°表现为-127°。

 

 

图3. 接收器子系统评估平台

表2. 0 dBm RF输入实测相移

 

 

通过10个步骤从-180°到+180°收集结果,其中,未校正数据产生图4和图5所示椭圆形。通过确定系统中的额外相移量,可以解决该误差问题。 表2显示,系统相移误差在整个传递函数范围内都是恒定不变的。

系统相位误差校准

对于图3所示系统,当步长为10°时,平均实测相移误差为-37.32°。在已知该额外相移时,可以算出经调整的子系统直流电压。 变量φPHASE_SHIFT定义为观测到的额外系统相移的平均值。 相位补偿信号链中产生的直流电压可以计算如下:

电压ICHANNEL = 最大I/Q输出 × (cos(θTARGET)cos(φPHASE_SHIFT) - sin(θTARGET)sin(φPHASE_SHIFT)) (5)

电压QCHANNEL = 最大I/Q输出 × (sin(θTARGET)cos(φPHASE_SHIFT) + cos(θTARGET)sin(φPHASE_SHIFT)) (6)

对于给定的相位设置,等式5和等式6提供了目标输入电压。 现在,子系统已线性化,可以校正失调误差和增益误差了。图4和图5中同时显示了线性化的I和Q通道结果。对数据集进行线性回归计算,结果将产生图中所示最优拟合线。 该拟合线为各个转换信号链的实测子系统传递函数。

 

 

图4. 线性化的I通道结果

 

 

图5. 线性化的Q通道结果

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭