当前位置:首页 > 电源 > 功率器件
[导读]单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可

单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

目前,以单片机为基础的数字式电气测量、保护装置已成为主流形式。交流信号直接采样也已成为一种普通的方法。快速傅立叶算法是其中的主要算法,而最小二乘方算法,计算量很大,尤其在单片机的处理能力有限的情况下,既要保证实时性,又要保证计算速度,不经过精心设计和程序优化,很难保证二者的统一。

通过减少采样次数、使用每周滤四个采样点拟合的滤波器和一套优化措施,使该算法计算速度大大提高,可以胜任工频向量的实时测量,因而可以用于过流、速断、方向保护等多个方面。本文分析了滤波器中的向量相位关系,同时给出了以此为基础的两线制功率计算举例。该方法已通过实际应用检验。

1 最小二乘方滤波器的构造

根据文献[1~3]的研究结果,对每一路信号,输入电压函数可表示为:

 

 

在一般的测量、保护应用中,只需关心基波成分。为减少计算量,应最大限度地减少采样次数。根据采样定理,一个正弦函数的离散采样次数量少每周波3次。为了方便,将每周波采样次数定为4次,即采样周期为5ms.则公式(1)中只能包含直流和工频分量。将直流分量按泰勒级数展开并取其前两项,则(1)式成为:

 

 

其中,P0为直流分量值,P1为基波峰-峰值,θ1为基波分量在采样时刻相对于零点的相位角。

若以最近连续4次采样值为样本,可得到4个采样方程。如将P0、-P0λ、P1cos(θ1)P1sin(θ1)作为待测未知数,可将4个采样方程表示成如下矩阵:

 

 

若分别用符号A表示系数矩阵,X表示未知参数向量,U表示采样值,则:

 

 

其中A-1表示A的逆矩阵,亦即向量X的最小二乘方滤波器。根据文献[3],这个滤波器为:

 

 

因此,

 

 

实际应用中,为了减少单片机顺序采样带来的时间延迟所造成的计算误差,硬件电路应具有同步采样功能。其作用就是在采样时刻将所有电气信号分别保持下来。

2 数字滤波器中瞬时相量的关系

若用ua、ub、uc分别表示三相电压相量,Ua,Ub、Uc表示其有效值,初始相位角分别用θua、θub、θuc表示;用ia、ib、ic分别表示三相电流相量,Ia、Ib,Ic表示其有效值,初始相位角分别为θia、θib、θic.则(4)式就是对应相量在X轴上的投影,即矢量的实部;(5)式就是对相量在Y轴上的投影,即矢量的虚部,(4)和(5)式中的θ1是上述相量相对于20ms时间窗之初时刻的相位角。

图1表示了A相电压和A相电流的相位关系,其他依此类似。

 

 

上述相量的相位关系是相量进一步运算的基础。

3 两线制功率计算

目前,高压线路的功率测量一般采用三相电压和两组电流,即两线制功率表方法。用式(4)、(5)、(6)、(7)和(10)可以实现线路有功功率和无功功率测量,具体过程如下:

两线制的前掉是假设三相电流平衡,即:

 

 

其中,uab为A相和B相之间的线电压;ucb为C相和B相之间的线电压。

将(6)和(7)式结果带和(14)、(15)和(13)式,即测得三相平衡线路的有功功率。

如果输入电压是相电压,则:

 

 

将上式中的余弦函数展开后,再钭(6)和(7)式的对应结果分别代入即可。

无功功率的计算只需将(14)、(15)和(16)式中的余弦运算改为相应的正弦运算即可。

4 基于单片机应用的优化措施

从目前市场情况来看,虽然单片机性能在不断提高,如INTEL单片机从8位、16位到32位不断推陈出新,但真正得以广泛采用的并不是性能最好的产品。从实际应用来看,有时必须面对一个受限制的客观现实。就本应用来说,采用以下措施可大大提高程序的计算速度。

4.1 变浮点运算为整数运算

对于(4)~(10)式来说,采用C或PL/M高级语言进行浮点运算既方便,精度又高。但与整数运算相比,浮点运算速度要慢得多。因此,为提高计算速度,应尽量采用整数运算。从工程实际来看,A/D转换后的结果一般是双字节整数,可与放大10位的最小二乘滤波器直接运算,则(4)式变为:

 

 

(17)、(18)式只有6次4字节的长整数乘法和4次加法。即使对12位A/D而言,(17)、(18)式的计算结果也不会溢出。由于滤波器扩大10倍时是整数,没有四舍五入,因此计算过程无任何附加误差。

4.2 快速求平方根法

从(4)~(10)式来看,耗时最多的是(10)式,即求平方根运算,获得基波的峰-峰值。

如果直接采用标准浮点库提供的开平方函数,16MHz的80196KC需3ms左右。若采用文献[4]中的整数查表法,或文献[5]提供的精度为1%的二分法,相同条件下求根所需时间一般在100~300μs之间,计算速度提高10倍以上。

本文提出的每周波4个采样点的最小二乘方滤波器可在一般单片机中实现工频信号的实时相量测量。算法进一步优化后,可在一个周波的时间窗内对多路信号作出实时反映,满足一般保护的技术要求。该算法还可以实现其他保护和测量功能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭