当前位置:首页 > 电源 > 功率器件
[导读]数模混合电路设计当中,干扰源、干扰对象和干扰途径的辨别是分析数模混合设计干扰的基础。通常的电路中,模拟信号上由于存在随时间变化的连续变化的电压和电流有效成分,在

数模混合电路设计当中,干扰源、干扰对象和干扰途径的辨别是分析数模混合设计干扰的基础。通常的电路中,模拟信号上由于存在随时间变化的连续变化的电压和电流有效成分,在设计和调试过程中,需要同时控制这两个变量,而且他们对于外部的干扰更敏感,因而通常作为被干扰对象做分析;数字信号上只有随时间变化的门限量化后的电压成分,相比模拟信号对干扰有较高的承受能力,但是这类信号变化快,特别是变化沿速度快,还有较高的高频谐波成分,对外释放能量,通常作为干扰源。

作为干扰源的数字电路部分多采用CMOS工艺,从而导致数字信号输入端极高的输入电阻,通常在几十k欧到上兆欧姆。这样高的内阻导致数字信号上的电流非常微弱,因而只有电压有效信号在起作用,在数模混合干扰分析中,这类信号可以作为电压型干扰源,如CLK信号,Reset等信号。除了快速交变的数字信号,数字信号的电源管脚上,由于引脚电感和互感引起的同步开关噪声(SSN),也是数模混合电路中存在的重要一类电压型干扰源。此外,电路中还存在一些电流信号,特别是直流电源到器件负载之间的电源信号上有较大的电流,根据右手螺旋定理,电流信号周围会感应出磁场,进而引起变化的电场,在分析时,直流电源作为电流型干扰源。

无论电压型还是电流型的干扰源,在耦合到被干扰对象时,既可能通过电路传导耦合,也可能通过空间电磁场耦合,或者二者兼有。然而一般的仿真分析工具,往往由于功能所限,只能分析其中一种。例如在传统的SPICE电路仿真工具中,只考虑电路传导型的干扰,并不考虑空间电磁场的耦合;而一般的PCB 信号完整性(SI)分析工具,只考察空间电磁场耦合,将所有的电源、地都看作理想DC直流,不予分析考虑。耦合路径提取的不完整,也是困扰数模混合噪声分析的重要原因。

数模混合设计中,电源和地的划分,是业内争论的焦点。传统的设计中,数字模拟部分被严格分开;然而随着系统越来越复杂,数模电路集成度不断提高,分割又会造成数字信号跨分割,信号回流不完整,进而影响信号完整性,另外,电源的分割还造成电源分配系统的阻抗过高;有人提出“单点连接”:还是做分割,但是在跨分割的信号下方单点连接以避免跨分割问题;但是如果数模之间信号很多,难于分开,这种“单点连接”也存在困难,因而又有人提出不分割,只是保持数字和模拟部分不要交叉;还有一些资料介绍,在跨分割的信号旁边包地线或者并联电容,用来提供完整回流路径。无论哪种方法,似乎都有一定道理,而且都有成功的先例,然而所有这些分割方案的有效性以及可能存在的问题,一直没有检验的标准。

数模混合电路的仿真,还存在模型的问题。业界普遍接受的模拟电路仿真模型还是SPICE模型,数字电路信号完整性分析使用IBIS模型。多家EDA公司的仿真软件已经推出支持多种模型的混合模型仿真器,然而摆在设计师案头的主要困难是器件模型,特别是模拟器件模型很难得到。在数字设计看来,时域的瞬态分析,即某一时间点上确定的电压值,是仿真的主要手段,就像调试中的示波器那样直观。没有精确的模型,瞬态分析就无法实现。然而对模拟设计,特别是噪声分析,激励源在时间轴上难于描述或很难预测,只知道他的频率带宽范围和大致幅度,这时候我们通常会引入频域扫频分析,考察扫频信号在关注点的变化,如同频谱分析仪的作用。或者干脆如网络分析仪(NA)那样考察信号或噪声通过的通道的频域SYZ参数,进而预测干扰发生的频率和幅度。可见,数模混合噪声分析,既需要支持混合模型的仿真器,也需要仿真器同时支持时域分析和频域分析。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭