当前位置:首页 > 电源 > 功率器件
[导读]目前SMT业界主流的电路板组装技术应该非「全板回流焊接(Reflow)」莫属,其他当然还有别的电路板焊接方法,而这种全板回流焊接又可以区分为单面板回焊及双面板回焊,单面回焊

目前SMT业界主流的电路板组装技术应该非「全板回流焊接(Reflow)」莫属,其他当然还有别的电路板焊接方法,而这种全板回流焊接又可以区分为单面板回焊及双面板回焊,单面回焊的板子现在很少人使用了,因为双面回焊可以节省电路板的空间,也就是说可以让产产做到更小,所以市面上看到的板子大多属于双面回焊制程。

(题外话,如果没有空间上的限制,其实单面板的制程可以节省一次SMT的制程,如果把材料成本与SMT的工时费用比较一下,说不定单面板反而还比较节省费用。)

 

 

因为「双面回焊制程」需要做两次的回焊的关系,所以会有一些制程上的限制,最常见的问题就是板子走到第二次回焊炉时,第一面上面的零件会因为重力关系而掉落,尤其是板子流到炉子的回焊区高温时,本文将说明双面回焊制程中零件摆放的注意事项:

(再来个题外话,为何第二面过回焊炉时,原来第一面已经上锡的大部分小零件不会重新融锡而掉落下来?为什么只有比较重的零件会掉落呢?)

哪些SMD零件应该摆在第一面过回焊炉?

一般来说比较细小的零件建议摆放在第一面过回焊炉,因为第一面过回焊炉时PCB的变形量会比较小,锡膏印刷的精度会比较高,所以较是合摆放较细小的零件。

其次,较细小的零件不会在第二次过回焊炉时有掉落的风险。因为第一面的零件在打第二面时会被放至于电路板的底面直接朝下,当板子进入回焊区高温时比较不会因为重量过重而从板子上掉落下来。

其三,第一面板子上的零件必须过两次回焊炉,所以其耐温必须要可以耐受两次回焊的温度,一般的电阻电容通常被要求至少可以过三次回焊高温,这是为了符合有些板子可能因为维修的关系,需要重新走一次回焊炉而做的要求。

哪些SMD零件应该摆在第二面过回焊炉?这个应该是重点。

大组件或较重的组件应摆放在第二面过炉以避免过炉时零件会有掉落回焊炉中的风险。

LGA、BGA零件应尽量摆放在第二面过炉,这样可以避免第二次过炉时不必要的重新熔锡风险,以降低空/假焊得机会。如果有细间脚且较小的BGA零件不排除建议摆放于第一面过回焊炉。

BGA摆放在第一面或第二面过炉其实一直很有争议,摆放第二面虽然可以避免重新融锡的风险,但通常第二面过回焊炉时PCB会变形得比较严重,反而会影响吃锡质量,所以工作熊才会说不排除细间脚的BGA可以考虑放在第一面。不过反过来想,如果PCB变形严重,只要在精细的零件,摆放在第二面打件贴片一定是个大问题,因为锡膏印刷位置及锡膏量会变得不精准,所以重点应该是想办法如何去避免PCB变形,而不是因为变形而考虑把BGA放在第一面,不是吗?

零件不能耐太多次高温的零件应该摆放第二面过回焊炉。这是为了避免零件过太多次高温而损毁。

PIH/PIP的零件也要摆在第二面过炉,除非其焊脚长度不会超出板厚,否则其伸出PCB表面的脚将会与第二面的钢板产生干涉,会让第二面锡膏印刷的钢板无法平贴于PCB造成锡膏印刷异常问题发生。

某些组件内部会有使用焊锡作业的情形,比如说有LED灯的网线连接器,必须注意这种零件的耐温能否过两次回焊炉,如果不行就得放置于第二面打件。

只是零件摆放于第二面打件贴片过回焊炉,就表示电路板已经过了一次回焊炉高温的洗礼,这时候的电路板多少已经有些翘曲及变形发生,也就是说锡膏的印刷量及印刷的位置会变得比较难以控制,所以也就容易引起空焊或短路等问题,因此放在第二面过炉的零件,建议尽量不要摆放0201以及细间脚(fine pitch)零件,BGA也应该尽量选择有较大直径的锡球。

参照文章最前面的SD卡板的正反两面的图片,你应该可以很清楚的判断并指出来那一面会被安排在第一面打零件过回焊炉,而那一面会被放在第二面打件贴片过炉了吧!

另外,在大量生产中要将电子零件焊接组装于电路板,其实有很多种工艺方法,不过每一种工艺制程其实都是在电路板设计之初就已经决定好了的,因为其电路板上的零件摆放位置会直接影响到组装的焊接顺序与质量,而布线则会间接影响。

目前电路板的焊接工艺大致上分可以成全板焊接以及局部焊接,全板焊接又大致分为回流焊接(Reflow Soldering)与波峰焊接(Wave Soldering),而电路板局部焊接则有载具波焊(Carrier Wave Soldering)、选择性波焊(Selective Soldering)、非接触式雷射焊接(Laser soldering)等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭