当前位置:首页 > 电源 > 功率器件
[导读]msPLC/msOS群内有群友提到,对于电感,尤其是磁性材料,无从下手,确实,很多人学电源,首先碰到的就是电感问题,相比电容都有很多的标准件,而稍大一点的电感,都需要自己

msPLC/msOS群内有群友提到,对于电感,尤其是磁性材料,无从下手,确实,很多人学电源,首先碰到的就是电感问题,相比电容都有很多的标准件,而稍大一点的电感,都需要自己做,尤其是变压器。而大学时期,电感方面的知识书本也只是讲了个皮毛,根本没法用,下面整理一下电感,变压器的难点所在。

电感的储能公式 W = 1/2*L*I^2。

这个公式,本质上讲跟电容的储能公式形式等价:W = 1/2*C*U^2。

再自己想想,大家会发现跟高中时期学的力学物体运动的动能公式形式也一样:E = 1/2*M*V^2。

既然有动能,那么就有势能,弹簧的势能,E = 1/2*K*X^2。

以上四个公式中,前两者电容电感是电磁能的公式,后两者是物质机械能的公式。

大家都知道机械能中,动能跟势能相互转换就是振动,动能跟势能同时转换就是机械波,比如水波、振动波、声音等等。波是能量传递的一种基本方式,可惜的是波的学习在大学物理中,很多二三线高校就没有深入的开展,所以导致很多人不了解波。

跟物质机械能类似,电能的容器是电容,磁能的容器是电感(准确的名字应该是磁容),电能与磁能的相互转换是LC振荡,电能与磁能同时转换就是电磁波。

此外,大家要注意到,所有这些公式前面都有一个1/2,这个是很有意思的,比如,在恒定电压下,给电容充电,电容只能获得1/2供电端的能量,还有一半损失在电阻上了,这个规律在机械上也如此,典型的案例就是汽车起步时很耗油,匀速后油耗最低。起步时汽车速度为0,燃烧的气体对活塞做功,这些功几乎都转化为热能浪费了。所以要想降低损耗,需要降低档位,缓慢起步,让活塞运动速度与汽车速度的落差减少(这个中间有减速器和离合器,起步主要靠离合器实现速度落差阻尼匹配,类似RC充电电路的电阻,阻尼电压差)。

电容常见的指标有容量、耐压两个,其次是损耗,频率特性,损耗跟频率特性,跟介质材料有极大关系。

那么电感同样也有类似的指标,电感量,耐流,其次是损耗,频率特性,同理也跟磁性材料有极大关系。

电感,之前讲了,应该属于磁容,容纳磁的东西,相比电容容纳电场,电感就是容纳磁场,根据安培环路定律,电流就是磁,因为有电流就会产生磁场,所以跟电容对应,电感存储的是磁,也就是电流。

电容的电荷量公式 Q = C*U,同理电感的磁通量公式 Φ = L*I。(在多匝线圈中,要除以匝数,Φ = L * I / N)

电容的电荷量不能无限制的增加,若太多,电压升高,会导致介质击穿 E = U / d

电感的磁通量同样不能无限制的增加,若太多,磁压升高,会导致磁性材料的磁饱和,这是电感学习的难点,很多电感,都是围绕着电感量和磁饱和展开的,而电感量和磁饱和,是一对矛盾体,接下来核心讲这一对矛盾体。

我们以磁环电感为例来讲,

电感量的公式:L = kN^2,k为系数,N为匝数,电感量跟线圈的匝数的平方成正比,注意,是平方成正比。

磁通量的公式:Φ = L*I/N = k*N*I。磁通量为电流与匝数成正比。

电感量跟匝数平方成正比,而磁通量跟匝数成正比,确定形状后,不同的磁性材料,最大磁通量有一个极限,为了统一到材料上去,不考虑形状,一般用磁通量密度,也就是磁感应强度表示:B = Φ / S,也就是单位面积的磁通量。所以不同的材料,最大磁感应强度是不同的,比如铁氧体材料锰锌、镍锌最大磁饱和是0.5T,也就是5000高斯,一般取值小于0.3T,铁粉芯的磁饱和为1T。

我们自己制作的电感,需要满足两个条件,1、电感量大小,2、磁感应强度不能达到饱和、3、体积、发热量。电感所有的问题基于这个展开。

设计电感,我们总是想用最小的磁环、最短的铜线达到目的,并且还没有发热量。若想实现这个,那么磁性的材料损耗必须要低,此外铜线短一些,铜的发热量也少,尤其在高频下,铜线因为趋肤效应发热量提高。

基于上述条件,一般采用高磁导率低损耗的锰锌或者镍锌材料,锰锌常见的是PC40材料,磁导率为2500,镍锌适合更高的频率,但磁导率低一些,往往是800。高的磁导率,很容易得到高的电感,所以很适合做高频变压器。现在开关电源基本上工作在100KHz上,都是用锰锌来做变压器的。

然而,在一些场合,比如变压器整流后输出,需要电感滤波,这个时候同时存在交流和直流电,很高的磁导率,很容易让直流导致磁饱和,类似一个喇叭,没声音的时候,应该在音圈振动的中心原点,而因为有直流存在,偏离中心点了,这样交流波动的范围就大大缩小。所以这个时候需要调整策略,首先要选择磁饱和大的磁芯,比如上面讲到,铁粉芯磁饱和可以达到1T,高于锰锌一倍,其次,铁粉芯磁导率较低,一般为60甚至更低,磁导率低了,绕的圈数就要多一些才能达到想要的电感量,或许大家会问,电感量低了,圈数绕多了,同样也要导致磁饱和啊,不知道大家注意到上面讲的一点没有,电感量跟圈数的平方成正比,而磁感应强度跟圈数成正比,也就是说,随着圈数的提高,电感量很快达到我们想要的值,而磁感应强度却没有达到饱和。利用电感量跟圈数的平方关系,而磁感应强度与圈数线性关系,实现了很好的平衡电感量与磁饱和,这一点非常关键。

像现在的大功率电源前段都有PFC,也就是功率因数校准,都需要升压用的电感,这个电感流过的电都是交直流复合的,所以一般用铁粉芯材料,现在比较好的一种铁粉芯名叫铁硅铝,磁导率125附近,发热量较低。

可以这么讲,目前市面上大部分开关电源,变压器一般用高磁导率的铁氧体材料锰锌,而升压、降压滤波,带直流分量的都是用低磁导率的铁粉芯材料。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭