当前位置:首页 > 电源 > 功率器件
[导读]如今MEMS麦克风正逐渐取代音频电路中的驻极体电容麦克风(ECM)。ECM和MEMS这两种麦克风的功能相同,但各自和系统其余部分之间的连接却不一样。本应用笔记将会介绍这些区别,

如今MEMS麦克风正逐渐取代音频电路中的驻极体电容麦克风(ECM)。ECM和MEMS这两种麦克风的功能相同,但各自和系统其余部分之间的连接却不一样。本应用笔记将会介绍这些区别,并根据一个简单的基于MEMS麦克风的替换电路提供设计详情。

音频电路的ECM连接

ECM有两根信号引线:输出和接地。麦克风通过输出引脚上的直流偏置实现偏置。这种偏置通常通过偏置电阻提供,而且麦克风输出和前置放大器输入之间的信号会经过交流耦合。

ECM的常见用例是在手机上连接的耳机中用作内联式语音麦克风。这种情况下,耳机和手机之间的连接器有四个引脚:左侧音频输出、右侧音频输出、麦克风信号以及接地。在这种设计中,ECM的输出信号和直流偏置电压在同一信号线路中传输。偏置电压源通常约为2.2 V。

MEMS麦克风区别

模拟MEMS麦克风的信号引脚上不使用输入偏置电压。但是,它是一种三端器件,有不同的引脚分别用于电源、接地和输出。VDD引脚的供电电压一般为 1.8至3.3 V。MEMS麦克风的信号输出通过直流电压实现偏置,一般等于或接近0.8 V。在设计中,该输出信号通常会经过交流耦合。

 

 

图1. ECM电路连接

相对于ECM,使用MEMS麦克风的关键优势在于它的电源抑制(PSR)性能更强。MEMS麦克风的PSR通常至少为70 dBV,ECM却根本没有电源抑制能力,因为偏置电压直接通过电阻连接至麦克风。

用MEMS麦克风取代ECM时需要进行的电路更改

对于原本围绕ECM设计的系统,改用MEMS麦克风时面临的基本难题是,电源和麦克风输出没有单独的信号,例如使用耳机式麦克风时。如果对电路进行一些小的更改,就可以在此类设计中使用MEMS麦克风。首先,必须将信号链中直流偏置提供的下游信号与麦克风的输出信号隔离。其次,必须将此直流偏置用于为 MEMS麦克风供电,而且不能让麦克风的输出信号干扰电源。直流偏置的隔离可通过交流耦合电容实现,MEMS麦克风的电源可通过仔细设计的电路提供,该电路充当分压器和低通滤波器。以下设计中使用了ADMP504 MEMS麦克风作为示例。其中用到了一个2.2 k 偏置电阻。

 

 

图2. 将一根线用于电源和输出信号的MEMS麦克风

图2显示了一个实现上述功能的设计示例。在耳机的设计中,耳机连接器左侧的电路部分将会在实际耳机中,2.2 k偏置电阻和1 F交流耦合电容则在源设备(例如智能手机)中。电阻R1和R偏置形成分压器,MEMS麦克风将V偏置电压降至VDD引脚的供电电压。根据V偏置、R偏置和所需VDD电压的值,电阻R1可能需要非常小,如下例所示。要计算所需的串联电阻(R偏置 + R1),可将麦克风建模为一个电阻,将有固定电流从中流过。VDD = 1.8 V时,ADMP504的典型供电电流为180 A。根据欧姆定律,VDD上的电压为1.8 V时,该麦克风可建模为一个10 k 的电阻。要求解合适的电阻R1值,所用的分压器公式为:

[麦克风VDD] = [偏置电压] &TImes;(10 k /(10 k + R1 + R偏置

根据此公式可以算出,一个2.2 k 的R偏置电阻和一个499的R1电阻会从2.2 V偏置电压分出1.73 V到麦克风的VDD上。在选择R1值时,需要进行权衡取舍;如下所示,此值太大会导致VDD过小,但为了防止C2过大,又不能让此值太小。 如今MEMS麦克风正逐渐取代音频电路中的驻极体电容麦克风(ECM)。ECM和MEMS这两种麦克风的功能相同,但各自和系统其余部分之间的连接却不一样。本应用笔记将会介绍这些区别,并根据一个简单的基于MEMS麦克风的替换电路提供设计详情。

 

 

图3. 分压器模型

图3显示了该分压器的两种不同模型。左侧,ADMP504麦克风建模为180 A电流源;右侧,麦克风则建模为具有1.8 V VDD的10 k 电阻。

电容C2和电阻R1形成低通滤波器,用于对电压供电信号中输出的麦克风音频进行滤波。这种滤波器转折频率应该远低于麦克风本身的滤波器较低转折频率。将低通滤波器设计为至少低于麦克风较低转折频率的两个倍频程,这会是一个好的开端。对于ADMP504,此转折频率为100 Hz。10 F的电容和499 的R1电阻可实现转折频率为31 Hz的滤波器。较大的电容或电阻会进一步降低此转折频率,但是该滤波器的电阻大小必须与它对分压器的贡献保持平衡,其中,分压器会向麦克风提供VDD。低通滤波器的?3 dB点的计算公式如下:

f?3 dB = 1/(2π &TImes; R1 &TImes; C2)

其中:

R1为分压器中的电阻。

C2为低通滤波器电容。

电容C1对麦克风输出进行交流耦合,这样它的偏置输出就会与通过手机提供的麦克风偏置电压隔离。在给定的VDD条件下,凭借R偏置、R1和麦克风的等效电阻,该电容还会形成高通滤波器。计算高通滤波器转折频率时要考虑的总电阻为与R偏置并联的RMIC和R1的串联电阻。此电阻的计算公式为

R总 =((RMIC + R1) &TImes; R偏置)/(RMIC + R1 + R偏置)

对于此处的示例,R总 = 1810 。高通滤波器转折频率为:

f?3 dB = 1/(2π(R总 × C1)

要让滤波器转折频率至少低于ADMP504低频滚降频率100 Hz一个倍频程的滤波器转折频率为100 Hz,C1至少应该为1.8 F。

 

 

图4. 采用ADMP504 MEMS麦克风的电路

图4显示了一套完整的耳机电路,其中采用了ADMP504MEMS麦克风以及合适的电阻和电容值,并以我们处理的V偏置和R偏置值为依据。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭