当前位置:首页 > 电源 > 功率器件
[导读]我们知道,S3C2440对外引出有27根地址线(ADDR0~ADDR26),对应的访问范围为128M,另外,CPU还引出了8根片选信号(nGCS0~nGCS7)——低电平有效,对应8个BANK,这样就

我们知道,S3C2440对外引出有27根地址线(ADDR0~ADDR26),对应的访问范围为128M,另外,CPU还引出了8根片选信号(nGCS0~nGCS7)——低电平有效,对应8个BANK,这样就达到了1G的地址访问空间。

理论上我们知道可以使用的地址访问范围为4G(32位的CPU),那么其他的地址空间用来做什么了呢?一部分是用来作为CPU的内部寄存器地址,一部分保留。

注意:S3C2440的寄存器范围处于:0x48000000~0x5fffffff;存储控制器的地址在:0x48000000~0x48000030(13个);

BANK1~BANK5的连接都差不多,所以对应的寄存器设置也一样;参考

setmem 0x48000008,0x00002e50,32

setmem 0x4800000c,0x00002e50,32

setmem 0x48000010,0x00002e50,32

setmem 0x48000014,0x00002e50,32

setmem 0x48000018,0x00002e50,32 主要用来设置访问时序

BANK0稍微有点不同,setmem 0x48000004,0x00000f40,32 (不知道时序方面的设置 是不是和boot rom有关)

下面重点分析SDRAM的连接与寻址的方式

几个用于SDRAM的信号:

SDRAM的时钟有效信号SCKE;

SDRAM的时钟信号SCLK0/SCLK1;

数据掩码信号DQM0~DQM3,对应nWBE;

SDRAM的片选信号nSCS0,与nGCS6是同一管脚两个功能;

nSRAS 行地址选通脉冲信号;

nSCAS 列地址选通脉冲信号;

 

 

首先,SDRAM内部是由几个存储阵列组成,每个存储阵列为一个logical BANK

每个logical BANK 即存储阵列 又由行地址和列地址来寻址,就像EXCEL文档表格一样;一般有4个logical BANK。

对SDRAM的访问分为以下几个步骤;

使片选信号 nSCS0有效 BANK6 起始地址为0x30000000;

用两根地址线作为选择信号选择相应的logical BANK (addr25 addr24);addr26?(思考中)

对被选芯片进行统一的行列寻址;(行地址数:13 ,列地址数:9)当nSRAS有效时,addr2~addr14上发出的是行地址信号bit[23:11];当nSCAS有效时,发出的是列地址信号bit[10:2]。

为什么addr0和addr1没有连接,我们知道BANK6是32位宽的,那么这两根地址线就不用用到了(恒为0);

BANK6的起始地址是0x30000000,所以SDRAM的访问地址是0x30000000~0x33ffffff。

找到了存储单元,就开始传输数据了,那么怎么组织这32位宽的数据呢?

内存的这种接法,使它可以以8位访问,也可以16位访问,也可以32位访问

那4个信号nWBE3~0,正是字节选通控制。

按8位访问,也就是代码中若有:

*(unsigned char *) 0x30000000 = 0x78;

就是一个字节写,这时只有nBWE0信号有效

如果是0x30000001,则只有nBWE1有效(低),其它无效(高)。

再举个例,如果是按16位访问呢?

如果是16位访问,代码一般就是:

*(unsigned short *)0x30000000 = 0x1978;

这是一个16位写。但此时要注意,最低位必须是0,而不能是1,比如地址0x30000001就会使CPU异常,因为必须16位对齐!

dat16 = *(unsigned short *)0x30000002;

这是一个16位读

在16位访问时,0x30000000地址写操作中,nWBE1, 0 = 低,nWBE3, 2 = 高。当0x30000002时,则是nWBE3,2为低,nWBE1,0为高(无效)

32位时则是4字节对齐,也就是最低的两个地址位A1,A0必须为0,即对于32位访问,0x30000001, 0x30000002, 0x30000003都会导致异常(出错)

对于32位访问,0x30000000的下一个地址是0x30000004,因为这个地址是字节地址,但一下子就访问了0x30000000~0x30000003四个字节,也就是nWBE3~0四个信号一起反应!!!

不同的CPU访问的机制是不一样的,这要具体看手册了,是分开片选的

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭