当前位置:首页 > 电源 > 功率器件
[导读]国家电能变换与控制工程技术研究中心(湖南大学)的研究人员兰征、涂春鸣等,在2015年第23期《电工技术学报》上撰文,针对应用于交直流混合微网的电力电子变压器(PowerEle

国家电能变换与控制工程技术研究中心(湖南大学)的研究人员兰征、涂春鸣等,在2015年第23期《电工技术学报》上撰文,针对应用于交直流混合微网的电力电子变压器(PowerElectronicTransformer,PET),分析了并网和离网两种运行模式,并设计了相应的控制策略。

国家电能变换与控制工程技术研究中心(湖南大学)的研究人员兰征、涂春鸣等,在2015年第23期《电工技术学报》上撰文,针对应用于交直流混合微网的电力电子变压器(PowerElectronicTransformer,PET),分析了并网和离网两种运行模式,并设计了相应的控制策略。

并网模式下,控制PET输入接口使交直流混合微网等效为“阻性负载”或“电流源”,同时控制交流和直流输出接口都等效为恒定的电压源。对于离网模式,提出了混合功率下垂控制,能根据接口处频率和电压信息,结合混合微网下垂特性得到微网间需交换的功率。搭建了交直流微网系统和电力电子变压器仿真模型,仿真结果表明,在分布式能源功率波动情况下,PET能准确快速的调节主网、交流微网和直流微网三者间功率的流动,实现交直流混合微网的稳定运行,证明了本文所提控制策略的正确性。

分布式能源(DistributedEnergyResources,DER)的入网需求推动电力系统不断发展,微网是实现大规模间歇式DER接入的有效解决方案。DER采用直流形式接入,可以节省大量的换流环节,并且不需要进行相位和频率跟踪,可控性和可靠性将大大提高。直流是DER理想的接入形式,近年来直流微网逐渐得到了人们的重视。然而,交流微网仍然是现阶段微网的主要形式,交流接入仍然会是DER并网的主要形式,故交直流共存的混合微网会是将来长期存在的微网结构。

DER运行受制于自然条件,发电具有间歇性,大量DER的接入将使网络上产生双向功率流。公共联结点(PointofCommonCoupling,PCC)是配电网、交流微网和直流微网三者之间能量流动的中转站,PCC处的能量协调管理将至关重要,而实现功率的精确协调,需一台可靠的“能量路由器”。

电力电子变压器(PowerElectronicTransformer,PET)由高频变压器和电力电子变换电路组成,由于具备高低压交流接口和直流接口,拥有变压、隔离和能量传输功能,可以成为“能量路由器”,实现对PCC处的能量协调管理。

目前,对电力电力变压器的控制方法研究仅在于其基本控制,没有涉及和微网的协调运行,微网下垂控制方法也只考虑交流或直流一侧的电压信号,没有同时考虑到两侧信号对交直流微网工作状况的影响,文献[提出了两种近似的电力电子变换器的双向下垂控制方法,但是控制环节冗余,降低了系统的可靠性。

本文主要研究电力电子变压器在交直流混合微网中的应用,研究了混合微网并网与离网两种模式下的运行策略。并网模式下控制PET主网接口处电流与电压同相位,而交直流输出接口则都控制为恒定的电压源。

特别地,对于离网模式,提出混合功率下垂(hybriddroop)控制,能根据交直流微网接口处的频率和电压信息,结合交直流微网的下垂特性,得到交直流微网间需交换的功率。提出的控制策略能精确控制PET接口间功率的双向流动,调节主网,交流微网和直流微网三者间的功率分配,实现交直流混合微网的稳定运行。

图1PET拓扑结构图

结论

交直流混合微网将是未来长期存在的微网结构,本文针对应用于其中的电力电子变压器,分析了并网和离网两种运行模式,并相应设计了运行策略。

并网模式下,控制输入接口PET,使交直流混合微网看起来为“阻性负载”或“电流源”;而在输出接口处,使PET看起来为恒定的电压源。特别地,对于离网模式提出混合功率下垂控制,协调交直流微网间功率,精确快速的控制功率流动。

搭建了仿真分析模型,仿真结果表明在微网分布式能源功率波动情况下,PET能准确快速的调节主网、交流微网和直流微网三者间功率的流动,实现交直流混合微网的稳定运行,证明了本文所提控制策略的正确性。

本文仅对DER功率变化的情况进行了仿真,对动态过程中交流微网频率和直流微网母线电压变化未进行深入分析,也没有对DER离并网时PET和微网的稳定性进行分析,这都是后期研究工作要涉及并解决的问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭