当前位置:首页 > 电源 > 功率器件
[导读]本文的第一部分定义并描述了低电流技术的设计方法,解释了在设计这些电路过程中所遇到的问题,并且阐述了屏蔽方法和保护环方法的应用方案。低电流设计技术a. 把元器件悬浮排

本文的第一部分定义并描述了低电流技术的设计方法,解释了在设计这些电路过程中所遇到的问题,并且阐述了屏蔽方法和保护环方法的应用方案。

低电流设计技术

a. 把元器件悬浮排列

对于关键的微型放大器电路来说,通常需要用到一些“非传统”的结构技术来使这些放大器正常工作。

经典的低电流技术是一种“悬浮在空中”的连线技术,具体来说,就是在关键通路或电路节点上的元器件走向在板级系统上方互连。这些元器件的排布和路径与板级系统互不接触,从而有效消除了PCB板的影响。

聚四氟乙烯材料的终端可以用来支持大型元器件或者密集排列的节点。这些元器件的下方区域通常被设计成一整块裸露的保护平面。

图1:悬浮在空中的连线

图1:悬浮在空中的连线

这种技术会给设计带来最低的泄漏电流、最小的杂散电容和最优的整体低电流性能,但是这种技术需要手动排列元器件,而这却是在大规模生产和有限空间排布中难以实现的。

b. 利用双通道中的第二个通道

这里有一个小技巧:当你在设计一个非反相架构的电路时,利用双通道中的第二个(“B”)通道作为主放大器。

图二:标准的双通道运算放大器端口引出示意图

图二:标准的双通道运算放大器端口引出示意图

在标准的双通道端口引出结构中,第二个(“B”)非反相的输入端与负电源电压端口离得较远,也就是说,与反相端口隔离得较远。这样的话,输入端恰好在封装的边角上从而非常易于与源端相连。此外,在V-和“B”非反相端处也能留出保护环通路的空间。这样的话,“A”通道上的放大器可以用来作为保护环驱动电路。

单端口引出面临着与“A”通道存在的同样问题,也就是说,非反相输入端与电源电压距离较近。除了少数需要用到单端结构的情况外,如果单端和双端同时出现在一个具有八端口引出的封装中,采用上述双通道的方案将会更加有优势。

c.小封装并不一定那么好

图3:小封装的比较

图3:小封装的比较

较小管脚间距的封装意味着更大的泄漏电流。这主要有两个原因,一是因为紧密的管脚排布,二是由于更加紧贴着电源电压和其他端口。虽然单位面积的板级电阻率是一定的,但是将焊盘排布得更近会减小距离从而降低电阻率。

此外,更加紧密的管脚排布更容易受到沾污,而且对于这么紧密的管脚距离来说,是很难有效进行清洁的。正如我们所看到的,如果间距并不是首要考虑因素的话,SOIC-8封装很少会比MSOP-8封装更有优势。在这点上,原先的DIP封装仍然是最佳的封装形式。基于同样的原因,单管腿的SOT-23比单管腿的SC-70更受欢迎。

设计和版图的建议

这里提供一些通用的建议,供你设计时参考借鉴。

保护环应该围绕所有输入端口,在内层和底层上同样要对PCB板采取保护措施。由于输出端具有低阻抗,因此它不需要进行保护,但是输出端应该与输入端有效隔离。

在保护环的距离以及输入阻抗之间需要作一个折衷。如果保护环和输入通道之间的距离较大的话,将会降低输入阻抗。

将输入表面积最小化,从而可以降低杂散电容和离子冲击的影响。相对于微型放大器的信号幅度来说,电流与电阻的乘积带来的电压降可以被忽略,而且工作速度一般来说又比较低,因此,可以通过尽可能减小布线宽度的方法来减小杂散效应。

需要将所有松散布局的走线排布得更加紧密些。敏感的高阻抗电路通常可以“看到”走线漂移的影响(ΔC)。在保护环的区域内,跳线或者互连线应该设计得更加裸露(最好是镀锡的实心铜材料)。

对于去除焊锡层的PCB板来说,最好用密闭的保护环或掩蔽层包围起来,以减小水分和灰尘颗粒的影响。

如果需要的话,在导体的周围尽可能多地采用聚四氟乙烯和其他绝缘材料。同时,将其余区域保护起来。对于高压应用来说,请注意互相之间的距离。

请注意板上用到的塑料和胶带。请使用可抗ESD的导电胶。

陶瓷电容会受到压电效应和机械振动的影响,这时产生的噪声会引起电容的电荷馈通。在输入端、集成端、反馈端和偏置网络中使用陶瓷电容要格外小心。

整个包装应该被完全封闭,易潮的情况下,要使用干燥剂。这些干燥剂应该像通常的维护服务一样,方便被用户或者实验人员更换。

尽量避免板子被弯曲或受到应力影响。在多层板之间采用点支撑或面支撑的方法,请不要引入外部用户控件或板级连接器。

正如在本文开头所提到的,在微型放大器领域,与“传统”电路相比,设计一个成功的电路要求采用不同的设计方法。如果大家能够遵照上述一些简单建议的话,各位一定能达到一次成功的高设计水平。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭