当前位置:首页 > 电源 > 功率器件
[导读]将模拟乘法器和高边电流检测放大器相结合,能够在笔记本电脑或其他便携仪器中实现电池充、放电电流的测量。本文讨论将ADC的基准电压加到模拟乘法器的一个输入端,以提高电流

将模拟乘法器和高边电流检测放大器相结合,能够在笔记本电脑或其他便携仪器中实现电池充、放电电流的测量。本文讨论将ADC的基准电压加到模拟乘法器的一个输入端,以提高电流测量精度的方法。

对可靠性和精确性要求非常高的应用中大量使用了高边电流检测放大器。笔记本电脑中,它被用来监测电池的充、放电电流,也可以用来监测USB口和其他电压的电流。为了控制系统发热和电源损耗,要求降低这些电压的输出功率。在便携式消费类产品中,高边电流检测放大器用来监测锂电池的充、放电电流。汽车应用中,这样的放大器不仅可以监测电池电流,也可以用来进行电机控制和GPS天线检测。在通信基站中,这样的放大器也被用来监测功率放大器的电流。

很多应用中,高边电流检测放大器能够直接与ADC相连。有一些ADC由外部基准电压决定满量程输入范围,它们的输出精度在很大程度上取决于基准电压的精度。本文介绍了在多数应用中,如何利用一个集成了高边电流检测放大器的模拟乘法器来检测电池的充、放电电流。本设计方案通过把ADC的基准电压加到模拟乘法器的输入端,有效提高了检测精度。

高边与低边电流检测技术

高边、低边电流检测是两种通用的电流测量方法。高边检测是在电源(如电池)和负载之间放一个检流电阻;低边检测是在接地回路上串联一个检流电阻,这种方法与高边检测相比有2个缺点:第一,如果负载发生意外短路,低边电流检测放大器将被旁路,不能检测短路状态;第二,由于在接地回路中引入了所不期望的阻抗,从而把地平面分割开。

图1 高边电流检测(MAX4211)


高边电流检测也有一个缺点:电流检测放大器必需支持高共模电压输入,幅度取决于具体的电压源。高边检测主要用于电流检测放大器,而低边检测可采用简单的运算放大器,只要这个放大器能够处理以地为参考的共模输入即可。

利用高边检流放大器测量功率

图1说明了如何利用集成了模拟乘法器的高边电流检测放大器测量供给负载的功率(定义为负载电流与电压的乘积)。高边电流检测提供与负载电流成比例的电压输出,该输出电压加到模拟乘法器,而模拟乘法器的另一个输入为负载电压。由此,乘法器输出一个与负载功率成正比的电压。

这里的模拟乘法器不仅仅提供功率测量,还可提供其他用途。如果其外部输入没有连接到负载电压,也可以把它连接到ADC的基准电压。这种情况下,乘法器将不再测量功率,而是把电流检测放大器的输出电压与ADC的基准电压相关联。

图2说明了这种用法,高边电流检测放大器测量电池的充电电流。电压输出(POUT)加到输入范围为0V~VREF的16位ADC。这里,外部稳压源提供VREF,电压范围:1.2~3.8V(该例中为 3.8V)。乘法器的输入范围是0~1V,可以把3.8V基准电压通过R1/R2分压实现。假设R2=1kΩ,R1=2.8kΩ,则VREF=1V。MAX4211的增益为25,则电压测量范围为:0~150mV,输出电压(对POUT和IOUT)范围为0~3.75V(与流入负载的电流成正比)。

利用电流检测放大器的POUT作为输出,而不是IOUT,其优点是:加到ADC的信号(正比于负载电流)可以通过VREF降下来。用POUT作为输出,降低了对基准电压精度的要求,因为ADC的数字输出取决于输入电压与基准电压(代表满量程值)的比。因为POUT是基准电压VREF的函数,“VREF”比消除了基准对ADC测量精度的影响,理论上与基准电压及其精度无关。但是,如果把IOUT接ADC,基准上的任何误差都将影响到输出。

式(1)和式(2)分别给出了POUT和IOUT与ADC输入/满量程范围的比值,由此解释了上述结论。

POUT/VREF=ILOAD×RSENSE×25×VREF×R2/(R1+R2)/VREF=ILOAD×RSENSE×25×R2/(R1+R2) 式(1)

IOUT/VREF=ILOAD×RSENSE×25/VREF 式(2)

从式(1)可以看出,由POUT输出,ADC精度将与VREF精度无关;而从IOUT输出,将产生一个与VREF成反比的误差。

图2 利用检流放大器(MAX4211)和带外部基准的ADC测量电池充电电流


图2的整体精度取决于很多因素:电阻精度、放大器增益误差、电压失调、偏置电流、基准电压的精度、ADC误差以及上述参数的温漂。另外,图2给出了提高系统精度的解决方案,从中可以看出利用模拟乘法器和检流放大器可以消除误差源之一(基准电压误差)。VREF的精度至少与以下三个因素有关:初始误差(标称值的百分比)、VREF随负载的变化、VREF随温度的变化。

图3 对图2电路进行测试,POUT/IOUT与VREF的关系曲线,VSENSE为125mV


图3描述了上述第2个误差源。随着VREF负载的提高,VREF输出从3.8V降到1.2V。POUT将随着VREF变化,变化规律与之相同。图4~图6给出了VCC = 5V、VSENSE保持固定100mV时,VREF和MAX4211输出随温度的变化。图2电路的工作温度从-40℃变化到+85℃,以 20℃为级差(-20℃、0℃、+25℃、+45℃和+65℃),图4曲线显示了VREF随温度变化的结果。图5给出了图2电路中IOUT、IOUT/VREF随温度的变化曲线,如果用IOUT输出驱动ADC,IOUT/VREF与ADC的输入信号/满量程信号之比成正比。

IOUT/VREF之比随温度的变化与图4为基准(VREF)受温度的影响而发生变化。

图4 图2电路中,VREF随温度的变化曲线


图5 图2电路,IOUT、IOUT/VREF随温度的变化曲线,VSENSE为100mV


图6 图2电路,POUT、POUT/VREF随温度的变化曲线,VSENSE为100mV


最后,图6给出了POUT、POUT/VREF随温度的变化曲线。从图6可以看出:POUT/VREF与VREF随温度的变化(见图4)无关。VREF在0℃和+45℃之间向下弯曲经过POUT输出后进行了补偿。因为VREF没有出现在POUT/VREF曲线,相应地,ADC的输出也不会受VREF随温度改变的影响。

结论

集成了模拟乘法器的高边电流检测放大器通常用来测量负载功率。不过,这种集成乘法器也可以提供另一种功能。电流检测放大器可以连接内置或外置基准的ADC。两种情况下,整体测量精度主要与基准电压的精度有关。如果把负载电流与基准电压VREF相乘后输出到ADC,将可以消除基准电压的误差。采用这种设计,即使是使用低成本、低精度的基准电压,也可以提高负载电流的测量精度。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭