当前位置:首页 > 电源 > 功率器件
[导读]CAN-bus总线是应用最广泛的现场总线之一,而很多非常熟练的CAN工程师,面对一条CAN报文到底有多少位的问题时,却不能非常准确地回答。今天我们就从最基本的帧格式来解惑一条

CAN-bus总线是应用最广泛的现场总线之一,而很多非常熟练的CAN工程师,面对一条CAN报文到底有多少位的问题时,却不能非常准确地回答。今天我们就从最基本的帧格式来解惑一条CAN报文的到底有多少位。

CAN报文帧分为几种呢?CAN-bus通信帧共分为数据帧、远程帧、错误帧、过载帧和帧间隔。而数据帧和远程帧又有标准帧和扩展帧两种。其帧类型以及用途如表 1所示:


表 1 帧类型及用途


?数据帧

数据帧从结构上看分为7段,分别为起始段、仲裁段、控制段、数据段、CRC校验段、ACK应答段、帧结束段。如图1:


图 1 标准数据帧跟扩展数据帧结构图


帧起始段:该段由单个显性位构成,在总线空闲时才允许发送,所有节点必须同步于开始发送的数据帧的起始位;


标准帧仲裁段:标准帧的仲裁段由11位ID码和一个显性位RTR码组成,RTR码为远程帧标识位;


扩展帧仲裁段:扩展帧的仲裁段由29位ID码、一位显性的SRR码、一位隐性的IDE码和一位显性的RTR码组成;


标准帧控制段:标准帧的控制段由单位显性的IDE、保留位r0和4位数据长度代码DLC组成,DLC数据段采用BCD编码;


扩展帧控制段:扩展帧的控制段由两个保留位r1和r0和4位的DLC数据段组成,r1和r0都为显性填充,接收时无论保留位是显性还是隐性都没有影响;


数据段:一个数据段为8个字节;


CRC校验段:CRC校验段由15位的校验码和1个隐性位填充的CRC界定符组成,CRC校验范围为帧起始、仲裁段、控制段和数据段;


ACK段:ACK段由ACK码和一个隐性位ACK界定符组成,发送节点在ACK段发送两个隐性位,接收节点在收到的报文ACK前面的帧格式没有错误时,他将发出ACK码为显性位的报文。


帧结束段:由7个连续的隐性位组成。


?远程帧

远程帧帧格式跟数据帧类似,也分为标准帧跟扩展帧,但是远程帧属于被请求发送节点发送的报文,而数据帧是发送节点的报文。如图 2,远程帧没有数据帧。


图 2 标准远程帧和扩展远程帧的结构图


参照数据帧可了解远程帧的结构,但是两者之间也有不同:

SRR段和RTR段:数据帧是显性电平,远程帧是隐性电平;

节点性质:数据帧是发送节点发出的报文格式,远程帧是被请求发送的节点发送的报文格式;

CRC校验范围:数据帧是帧起始、仲裁段、控制段和数据段,而远程帧则是帧起始、仲裁段和控制段。


了解了数据帧跟远程帧的标准报文格式后,有些人可能会问了,我有时看到的报文为什么跟你的标准格式的位数不一样呢?


?位填充

CAN-bus属于异步串行通信,这种通信方式没有时钟线,所以各个收发器的时钟不可能完全一致,时钟不一致就会造成偏差。所以为了解决这个问题,CAN总线采用同步的方式来校准时钟。CAN-bus规定信号的跳变沿为同步信号,只要信号发生变化,节点时钟就被同步一次。CAN-bus还规定同步的最大周期为5个位。


但是问题来了,要是出现连续性的5个位甚至更长时间没有边沿跳变(例如数据段全为0x56),那该如何解决呢?CAN-bus对这种情况又进行了规范,如果传输的位信号连续5个位是相同的,就要插入一个电平相反的位,这个就是CAN-bus的“位填充”规则。如图 4。


图 4 位填充规则


?0x00和0x55

由于位填充规则的存在,所以就存在即使两个帧都是标准数据帧,但发送不同ID或者数据段的时候报文时间会不同,图5为1M波特率下ID跟数据都为0x00的标准数据帧报文。原本108个位的标准数据帧的真实的报文时间为123us。


图 5 标准数据帧0x00报文


而0x55的标准数据帧报文格式则如图 6:ID为555H,数据段为55H,报文没有出现连续的相同位,所以填充位最少,8位的数据段位时间为标准的8us,全报文时间为108us。


图 6 标准数据帧0x55报文


下表给出了标准数据帧、扩展数据帧、标准远程帧、扩展远程帧四种帧类型在发送不同ID和数据时位时间的差别。


表 2 不同ID和数据位填充位数不一样


通过CAN-Scope总线分析仪的报文接收和示波器,可以将每一帧报文跟波形做一一对应,快速分析总线上的报文时间和波形情况,实现CAN总线的快速故障定位和干扰排除。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭