当前位置:首页 > 电源 > 功率器件
[导读]在电子电路的设计过程当中,若想要得知电能的有效利用率,就需要借助PFC(功率因数校正)。PFC的数值越大,就越说明电能被有效利用。PFC的诞生是因为传统的二极管整流电路会对

在电子电路的设计过程当中,若想要得知电能的有效利用率,就需要借助PFC(功率因数校正)。PFC的数值越大,就越说明电能被有效利用。PFC的诞生是因为传统的二极管整流电路会对电网形成干扰,并且功率也会降低浪费电网的容量。为了解决这个问题,引入了PFC。目前市场上合格的并且拥有安规认证的电源,都加装了PFC电路。这就意味着,如果想要让产品顺利进入市场,就要充分了解PFC电路的设计,本篇文章从实例出发,将为大家对主动PFC电源进行分析。

主动PFC的优势

主动PFC的优势是,电压适应范围宽,功率因数高。功率因数和转换效率是两个不同的指标。功率因数是电路的参数,交流电路中的一个指标,和线路损耗有一定的关系。功率因数的范围是0~1.0,1.0是最理想的,0在实际电路中其实不存在。供电局对这个指标比较重视,对于一般家用没有实际意义。转换效率是关于能量转换的,直接决定电源的损耗大小。转换效率的范围是 0% ~100%,100%是理想的状态,0%是最差劲的极端。这才是我们应该关心的,转换效率越低,电源损耗越大,浪费的电越多。功率因数不影响电表走字,0.1和1.0都是一样的走法。转换效率要影响电表走字,转换效率越低,损耗的电能越多,电表也会多走些。高功率因数,是在给供电局省钱。

主动PFC和电源转换效率并没有必然联系。就目前市面上的产品来看,大部分高转换效率的电源都是主动PFC的,也同时拥有很高的功率因数。之所以目前市场上大多数电源都是主动式PFC,是由于以下几点原因。

由于低端产品对成本的要求过于严格,所以几乎不可能使用主动PFC设计。而购买这种商品的人同样不会关心功率因数及转换效率究竟如何。因此低端电源普遍采用了传统的电路设计,效率低,功率因数也低。高端电源主要针对电脑玩家和专业场合设计,功率普遍很大,成本可以放宽,本身卖得也很贵。被动PFC在功率超过400W以后,损耗变大,效率变低,体积太大,重量也大。

主动PFC在400W功率以上效率有优势,虽然价格贵,但是高端用户不会在乎这一点价格。高端电源通常都不会沿用传统的电路设计,而是厂家精心研发的先进电路,效率自然提高很多。最终的结果就是:高端电源几乎全都是主动PFC,功率因数很高,效率也很高。

实际上,主动PFC在低功率时,自身损耗大于被动PFC。毕竟它是一个复杂的电路,工作起来要消耗电能;而被动PFC就是一个电感。不过很少有人让高端电源工作的低负载下,这个问题也就不明显了。

主动PFC还有一个最麻烦的缺点:电磁干扰大。为了搞定电磁干扰,EMI滤波电路要加强,电路更加复杂。有些电源在待机时发出高频噪音,也是因为主动PFC。总结

高端电源(400W或更高),首选主动PFC,在大功率的场合,主动PFC优势明显,高端产品成本上不受限制,电路设计优秀,完全可以弥补主动PFC的缺点。高效率高性能的产品谁都喜欢。

低端电源(350W或更低),根据自己的需求选择,不必苛求主动PFC,在成本受限的情况下,主动PFC的缺点开始暴露,电磁干扰,高频噪音。在300W这个等级,主动PFC已经完全没有优势了。

实例分析 如何选择PFC

用几台电脑分别使用额定400W、450W、500W的电源。

首先说额定400W的电源,主动PFC,两级EMI滤波,电路设计比较前卫,转换效率很高,自身发热小,因为开关频率很高,超过了人能听见的范围,听不到高频噪音。

400W;主动PFC;三级EMI滤波;传统的主动PFC设计,转换效率不高,自身发热一般;开关频率不算高,有明显的高频噪音。

450W;主动PFC;三级EMI滤波;传统的主动PFC设计,转换效率偏低,自身发热大,开关频率应该比较高,没有明显的高频噪音。

500W;被动PFC;两级EMI滤波;传统的被动PFC设计,转换效率糟糕,发热巨大。没有任何高频噪音,不过风扇的噪音很大。

400W这个电源,也都是名厂产品。主动PFC效率明显占优,不过在EMI滤波器方面,主动PFC却更为实用。在选电源的时候,很消费者都还很纠结该选择被

通过对主动式和被动式PFC的对比,相信大家已经充分掌握了关于这两种PFC的区别,并能选择分析出适合自己的PFC。从结论上来看,主动式的PFC更加适合配置较齐全的高成本电源,而在一般情况下我们如果想使用PFC,那么选择被动式PFC就可以满足需求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

D类音频放大器参考设计(EPC9192)让模块化设计具有高功率和高效,从而可实现全定制、高性能的电路设计。

关键字: 音频放大器 电路设计

可调电容作为一种重要的电子元器件,在电路设计中具有广泛的应用。本文将对可调电容的基本概念、工作原理、调用方法以及应用场景进行详细探讨,旨在帮助读者更好地理解和应用可调电容。

关键字: 可调电容 电子元器件 电路设计

近日,国内新一代激光陀螺驱动系列功能芯片问世,由湖南二零八先进科技有限公司(下简称“二零八公司”)技术团队研发。相比行业内普遍应用的上一代激光陀螺驱动控制电路,激光陀螺驱动专用芯片降低了电路设计难度,大幅减小体积重量,实...

关键字: 激光陀螺仪电路 芯片 电路设计

R是施密特触发器输入端的一个10KΩ下拉电阻,时间常数为10×10-6×10×103=100ms。

关键字: 复位 电路设计 施密特触发器

学好电子技术基础知识,如电路基础、模拟电路、数字电路和微机原理。这几门课程都是弱电类专业的必修课程,学会这些后能保证你看懂单片机电路、知道电路的设计思路和工作原理;

关键字: 单片机 编程 电路设计

Buck-Boost电路工作原理及其应用你有没有去了解过呢?随着科技的不断发展,电力电子技术在各个领域得到了广泛的应用。其中,Buck-Boost电路作为一种重要的电力电子变换器,具有很高的实用价值。本文将对Buck-B...

关键字: buck-boost 电路设计

本文是开发测量核心体温( CBT )传感器产品的刚柔结合电路板的通用设计指南,可应用于多种高精度(±0.1°C)温度检测应用。

关键字: 温度传感器 电路设计

自9月22日开始,2023年中国大学生工程实践与创新能力大赛选拔赛在全国各省市陆续展开,10月29日北京、海南、新疆等区域选拔赛成功举办,也为今年的选拔赛画上了圆满的句号。在此,向那些成功晋级国赛的选手们致以热烈祝贺,同...

关键字: PCB 电路设计

自从智能手机、平板电脑、笔记本电脑的兴起,内置的锂电池技术没有革命性突破,续航问题一直伴随着这些数码设备,移动电源的出现给我们出行过程中学习、工作、娱乐提供了更多额外的电量,可谓是功不可没。

关键字: 移动电源 电路设计 智能手机

低纹波直流稳压电源设计基于晶体管显示在这里。这种晶体管稳压器适用于需要高输出电流的应用。常规一系列综合监管机构,像7805只能提供高达1A。其他系列通晶体管被添加到7805稳压电路,为改善他们目前的能力。

关键字: 直流 稳压电源 电路设计
关闭
关闭