当前位置:首页 > 电源 > 功率器件
[导读]1、前言短路故障相对于其他故障类型来说是比较常见的,不同的设备的短路故障,大了讲都一样,细了说各有千秋,今天我们主要聊聊光伏逆变器的短路特征。电力系统中的电源,传

1、前言

短路故障相对于其他故障类型来说是比较常见的,不同的设备的短路故障,大了讲都一样,细了说各有千秋,今天我们主要聊聊光伏逆变器的短路特征。

电力系统中的电源,传统意义是指的是并入电力系统的同步发电机。但随着分布式发电技术的发展,各种形式的发电装置并入电力系统。按照分布式电源并网的方式,我们大致可以分为以下三类:

通过旋转电机和变流器并联并网的电源,主要指双馈风力发电系统;

仅仅通过变流器并网的电源,主要包括直驱风力发电系统、光伏发电系统、蓄电池、微型燃气轮机等;

仅仅通过旋转电机并网的电源,主要是小型的同步发电机,常见的为快速响应的柴油发电机组。

接下来,我们主要聊到的是属于第二类的光伏系统中逆变器的短路特性。

2、控制方式和特性

光伏逆变器的典型拓扑结构如下:

 

 

光伏逆变器的主要控制方法主要有:PI控制、滞环控制、双闭环控制、空间矢量PWM控制、无差拍控制、重复控制、比例谐振控制等等。其中,在并网光伏逆变器中,较为成熟使用较多的当属电流型控制方式,一般采用双闭环控制。

在双闭环控制中,电压调节器作为外环控制,一方面控制逆变器直流侧输出电压Udc跟踪电压给定值Udcref;另一方面通过PI调节器得到有功输入电流分量的参考值id*和无功电流分量的参考值iq*。电流内环的作用主要是按电压外环输出的电流指令进行电流控制。

光伏系统的短路故障特性主要取决于其控制方式的特点,为了保证在电力系统发生短路时的短路电流不超过逆变器的限定值,一般会在控制回路中的电流内环加入饱和模块。当发生故障时,内环参考电流将受到限制,通过设置饱和模块的上限,从而使得故障电流限制在允许得范围内,一般短路电流限制在额定电流得1.2~1.5倍。当饱和模块失效时,双环控制系统得外环控制会失效,系统变为纯电流控制。

系统发生短路时,逆变器的输出有两种情况:

①饱和模块不生效

远端故障时,系统的功率外环控制起决定性作用,有功电流增大,增大后的电流幅值在限幅门槛之内,所以此时的故障特性和负荷突然增加的响应式一致的,经过一个短暂的过渡过程,系统达到新的稳态,此时的输出功率仍然等于故障发生前的输出功率,系统相当于一个等功率源。

②饱和模块生效

近端故障时,由于端口电压降低,此时按照等功率源计算的话,为了保持功率不变,将输出较大电流;如果输出电流超过了逆变器的限制,电压外环将失去作用,双环控制变成纯电流控制。由于电流饱和控制模块在很短时间内便能够达到稳态值,在进入稳态后电网扰动电压消失,光伏系统的输出电流值和电流饱和模块的设定值相等。

上述两种情况,故障发生后都会存在一个短暂的过渡过程,此过程中可能会产生一定量的谐波,过程的时间长短主要取决于系统直流侧电容的大小、双环控制中外环控制的参数、直流侧输入功率等因素。

3、不同故障时的特点

下面我们来看下,升压变高压侧三相故障、升压变低压侧三相故障、相间故障和单相故障时的逆变器输出特征。故障前逆变器输出正序电流均为276A,没有零序和负序电流。

①升压变高压侧三相故障

发生此故障时,低压侧电流电压波形如下图所示:

 

 

故障过程中存在10ms的过渡过程,过程结束后,电流和电压趋于稳定,逆变器稳定后输出的正序电流为544A,功率方向为正方向。

②升压变低压侧三相故障

发生此故障时,低压侧电流电压波形如下图所示:

 

 

同样存在10ms的过渡过程,过程结束后,电流电压趋于稳定,逆变器稳定后输出的正序电流为549A,功率方向为正。故障电流和升压变高压侧三相故障基本相同。

③升压变低压侧两相间故障

发生此故障时,低压侧电流电压波形如下图所示:

 

 

10ms的过渡过程,该段时间内基波幅值不稳定。过渡结束后,电流和电压的基波幅值趋于稳定;逆变器稳定后输出的正序电流为560A,功率方向为正。非故障相电流和故障相电流幅值基本相同,稳定后无零序和负序分量。

④低压侧单相故障

发生此故障时,低压侧电流电压波形如下图所示:

 

 

故障过程20ms电流基波幅值不稳定,之后基本稳定;故障100ms后逆变器稳定输出的正序电流为445A,功率方向为正,故障电流略小于升压变高压侧三相故障时的电流。非故障相电流和故障相电流幅值基本相同,稳定后没有零序和负序分量。

4、概括

光伏逆变器的短路故障特征主要有:

①无论何种类型故障,逆变器的输出功率方向能正确反映故障特征;

②故障过程中存在较短的过渡过程,该过程中存在一定的谐波分量;

③过渡过程中的时间以及峰值的影响因素很多,包括直流侧电容、功率外环参数、输入功率大小等;

④在电网对称和不对称的故障情况下,逆变器均只输出正序电流,没有零序和负序电流。故障过程中,无论是单相故障、两相故障或者三相故障,三相电流差别不大,无法通过电流选择故障相别;

⑤由于逆变器中限幅作用的影响,无法通过电流大小来区别故障发生的远近。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭