• 压敏电阻知识解析

    压敏电阻知识解析

    什么是压敏电阻?它有什么作用?压敏电阻是电子技术工程不可缺少的电子元器件之一。那么关于压敏电阻的这些小知识,你知道吗?本文将为你揭示如何测量压敏电阻的好坏等实用知识。 压敏电阻 “压敏电阻“是一种具有非线性伏安特性的电阻器件,主要用于在电路承受过压时进行电压钳位,吸收多余的电流以保护敏感器件。英文名称叫“VoltageDependentResistor”简写为“VDR”,或者叫做“Varistor”。压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的“氧化锌”(ZnO)压敏电阻器,它的主体材料有二价元素锌(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。在中国台湾,压敏电阻器称为“突波吸收器”,有时也称为“电冲击(浪涌)抑制器(吸收器)”。 压敏电阻是一种限压型保护器件。利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。压敏电阻的主要参数有:压敏电压、通流容量、结电容、响应时间等。 压敏电阻的响应时间为ns级,比气体放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。压敏电阻的结电容一般在几百到几千Pf的数量级范围,很多情况下不宜直接应用在高频信号线路的保护中,应用在交流电路的保护中时,因为其结电容较大会增加漏电流,在设计防护电路时需要充分考虑。压敏电阻的通流容量较大,但比气体放电管小。压敏电阻器简称VDR,是一种对电压敏感的非线性过电压保护半导体元件。 压敏电阻的工作原理 当加在压敏电阻上的电压低于它的阈值时,流过它的电流极小,它相当于一个阻值无穷大的电阻。也就是说,当加在它上面的电压低于其阈值时,它相当于一个断开状态的开关。当加在压敏电阻上的电压超过它的阈值时,流过它的电流激增,它相当于阻值无穷小的电阻。也就是说,当加在它上面的电压高于其阈值时,它相当于一个闭合状态的开关。 压敏电阻的主要参数 压敏电阻器的主要参数有标称电压、电压比、最大控制电压、残压比、通流容量、漏电流、电压温度系数、电流温度系数、电压非线性系数、绝缘电阻、静态电容等。 1.标称电压标称电压是指通过1mA直流电流时,压敏电阻器两端的电压值。 2.电压比是指压敏电阻器的电流为1mA时产生的电压值与压敏电阻器的电流为0.1mA时产生的电压值之比。 3.最大限制电压最大限制电压是指压敏电阻器两端所能承受的最高电压值。 4.残压比流过压敏电阻器的电流为某一值时,在它两端所产生的电压称为这一电流值为残压。残压比则的残压与标称电压之比。 5.通流容量通流容量也称通流量,是指在规定的条件(以规定的时间间隔和次数,施加标准的冲击电流)下,允许通过压敏电阻器上的最大脉冲(峰值)电流值。 6.漏电流漏电流与称等待电流,是指压敏电阻器在规定的温度和最大直流电压下,流过压敏电阻器的电流。 7.电压温度系数电压温度系数是指在规定的温度范围(温度为20~70℃)内,压敏电阻器标称电压的变化率,即在通过压敏电阻器的电流保持恒定时,温度改变1℃时压敏电阻两端的相对变化。 8.电流温度系数电流温度系数是指在压敏电阻器的两端电压保持恒定时,温度改变1℃时,流过压敏电阻器电流的相对变化。 9.电压非线性系数是指压敏电阻器在给定的外加电压作用下,其静态电阻值与动态电阻值之比。 10.绝缘电阻绝缘电阻是指压敏电阻器的引出线(引脚)与电阻体绝缘表面之间的电阻值。 11.静态电容静态电容是指压敏电阻器本身固有的电容容量。 压敏电阻的简便测量方法及步骤 1)将恒温油盘装满色拉油。 2)将温度计横放入油盘内(温度计要全部浸入油中)。 3)将一对鳄鱼夹分别换接在一对万用表笔测试端。 4)将一支压敏电阻两引线端夹在鳄鱼夹上,万用表笔另一端插入万用表,开启万用表将其拨至电阻测量适当挡位,此时万用表显示出此室温下压敏电阻全部浸入油内,此万用表显示出此室温下压敏电阻的阻值。 5)将鳄鱼夹放入装满色拉内,此万用表用油的油盘中,使其鳄鱼夹及压敏电阻全部浸入油于监控油盘内油的温度变化。 6)当监控油温的万用表显示值相对稳定时即表明油温较稳定,此时可测试油内恒温的电阻,如鳄鱼夹上用于监控的压敏电阻的阻值和精度与待测压敏电阻的阻值精度相同时,可以进行对比测量。 压敏电阻测量注意事项 1)油盘中油的温度变化应控制20±0.1℃~~30±0.1℃范围内。 2)当恒温达不到控制精度时,可用相同阻值精度压敏电阻作油温监控电阻时行对比测量。 3)两块万用表在测量前应校验准确,至少要进行两表的一致性校验。 4)待测压敏电阻在油中恒温应不小于2分钟,且要全部浸入油中。 5)温度探头、监控用压敏电阻、待测电阻应中油盘中置于相同位子,以保证测量的准确。 希望大家能通过本文对于压敏电阻有所了解。压敏电阻的使用是有规律的,遵循一些必要的规则才能让压敏电阻的寿命更长久些。以上就是压敏电阻的相关知识解析,希望能给大家帮助。

    时间:2020-04-03 关键词: 工作原理 测量 压敏电阻

  • 电子管功放(胆机)交流噪声概述

    电子管功放(胆机)交流噪声概述

    什么是电子管功放(胆机)交流噪声?他是如何产生的?将报废的电子管收音机,改造成一台小胆机,是不错的主意。将收音机的音频,或者用CD作信号源,蓬蓬声不绝于斯耳。胆机出声易,出好声难。虽然各个人对所谓“好声”的品味各异。但有一个指标是必须要达到的。那就是静。当音乐渐止的时候,要想进入“此时无声胜有声”的境界,音箱应该静不可闻。 胆机的低频交流噪声,是一个或多个干扰源,对机器干扰的结果。而干扰源就来自机器的本身,我有个朋友用一天做好了胆机。却用了3个月除不了交流噪声。如何能够一次不返工,让胆机拒绝噪声,希望本文能给你们一点启发。 交流噪声有如下几种干扰源: 1.变压器的磁场泄漏; 2.滤波电容不良; 3.灯丝对阴级的窜扰; 4.前级输入信号的窜扰; 5.负反馈的相位不对。 如果你的机器一次做好后通电,发现有交流噪声,要想知道是那种干扰引起的,是很难查的。你应该逐步发现,逐步消除。 一、变压器磁场泄漏干扰的消除 在做机架之前,先将你的火牛,默认在机架某个你喜欢的位置,或在左,右边,或在中间。然后将你的火牛次级空悬,初级通电220V,再将你的一只输出小牛的初级空悬,次级连接喇叭,在较安静的环境下,如果二只变压器的位置不妥当。会有电磁窜扰吱-------声,此时你只要移动小牛,直到吱-------声消除,然后再如法定位另一只。现在你的3只变压器的位置就可以确定了,其余的时间你再考虑电子管的摆放,根据经验小牛距火牛的相对位置,不得近于3厘米。如果你的一对小牛是拆机件,最好做同相试验,除非是同厂,同型的产品。 方法如下:用一节电池分别碰二小牛的初级,用微安表的最小挡,连接次级,代替喇叭,如果二牛的绕向一致,表针的指向也一致。多碰几次,直到看清楚为止。因为表针的指幅不大。并且稍纵即逝。 二、滤波电容不良与灯丝对阴级的窜扰的消除 此时你已经固定好了变压器,和电子管座。开始焊机了,灯丝线要双绞,回路搭棚要一点接地。你不仿先焊完后级,停住。连接喇叭,插上功放管,通电。如果滤波电容不良,或灯丝对阴级的窜扰,就有交流哼声。你先将火牛6.3V灯丝的一端出线接地,如果交流哼声消除,滤波电容就没有问题,如果交流哼声不消除,滤波电容就有问题。换滤波电容应该是一件简单的事情。然后再互调灯丝的一端,选择交流哼声最小的一端接地。在夜静的条件下,你的耳朵距音箱,超过10厘米听不到交流噪声,滤波电容的容量就够了。如果你用的是石整流,滤波电容的容量,再大无碍。如果你辅以电感滤波,效果会更好。现在你可以将信号接到后级,听一下了声音了,不要担心会很响,因为你的前级还没有焊。 三、前级输入信号窜扰的消除 焊好前级。此时如果再有窜扰,前级输入信号部分就是唯一的原凶了。一定要用好的音量电位器,不要怕花银子,一分银子,一分货!输入信号线要用双芯的,外层一端接地。左右声道的二路线要一样长,以达平衡。尽可能紧贴底板,远离交流电场。 好了,你现在可以插上所有的电子管通电,将你的耳朵靠进音箱5-8厘米。 “这儿的黎明静悄悄”。此刻你可以连接信号源CD了,确认CD的电源已经通电。将你的新胆机的音量电位器旋最大,这儿的黎明仍然静悄悄。如果有交流声,并且交流声随音量电位器而变化。那就是你的CD不好了。如果没有交流声,就放盘碟吧。记住!胆机没有好坏之分,只有各味不同。否则你会掉进没完没了烧钱的陷阱中。 四、调整负反馈的相位 如果你用了后级大回环负反馈电路,此时可以连接了。如果声音不对,有啸叫声,说明是正反馈。调焊输出小牛初级或次级就OK了。负反馈的相位正确时,声音应减小。以上就是电子管功放(胆机)交流噪声产生的可能原因,希望能给大家参考。

    时间:2020-04-03 关键词: 噪声 胆机 电子管功放

  • 电位器解析

    电位器解析

    什么是电位器?它有什么用途?电位器是一种连续可调的A6A2-CS3E电阻器,其滑动臂(动接点)的接触刷在电阻体上滑动,可获得与电位器外加输入电压和可动臂转角成一定关系的输出电压,电位器在电路中通常用字母R或RP(旧标准用W)表示。 电位器的分类方法 1.按电阻体的材料分类 电位器按电阻体的材料可分为线绕电位器和非线绕电位器两大类。 线绕电位器又可分为通用线绕电位器、精密线绕电位器、大功率线绕电位器和预调式线绕电位器等。 非线绕式电位器可分为实芯电位器和膜式电位器两种类型。其中实芯电位器又分为有机合成实芯电位器、无机合成实芯电位器和导电塑料电位器。膜式电位器又分为碳膜电位器和金属膜电位器。 2.按调节方式分类 电位器按调节方式可分为旋转式电位器、推拉式电位器、直滑式电位器等多种。 3.按电阻值的变化规律分类 电位器按电阻值的变化规律可分为直线式电位器、指数式电位器和对数式电位器。 4.按结构特点分类 电位器按其结构特点可分为单图电位器、多圈电位器、单联电位器、双联电位器、多联电位器、抽头式电位器、带开关电位器、锁紧型电位器、非锁紧型电位器和贴片式电位器等多种。 5.按驱动方式分类 电位器按驱动方式分类可分为手动调节电位器和电动调节电位器。 6.其他分类方式 电位器除能按以上各种方式分类外,还可以分为普通电位器、磁敏电位器、光敏电位器、电子电位器和步进电位器等。以上就是电位器的相关解析,希望能给大家帮助。

    时间:2020-04-03 关键词: 分类 符号 外形

  • 什么是降低插头载荷设备能耗的新兴技术?

    什么是降低插头载荷设备能耗的新兴技术?

    大家都知道能耗,那么谁知道如何降低插头载荷设备能耗?8月15日,加州能源委员会举办了一次有关“新兴技术:插头载荷设备的移动效率”的网络研讨会。在本次研讨会上,来自Aggios的Vojin Zivojnovic和Davorin Mista介绍了一项研究项目,该研究将移动设备设计实务与硬件及能源管理软件相结合,用以降低机顶盒、电视机、计算机和游戏机等插头载荷设备的能耗。 为了找到降低移动设备能耗水平的原因和方法,Aggios团队经过深入研究后发现,对节能的关注已直接整合到依靠电池供电的产品的设计流程中。根据美国能源部的四年技术评估(2015年),2020年之后,剩下的节能机会与其他电子负载(MEL)密切相关。因此,对此类插头载荷采用以节能为导向的设计流可实现能源的巨大节省。 根据移动产品的设计特点,该项目所聚焦的设计原则可使工程师以更低的成本实现更大的节能。该项目旨在设法降低技术壁垒,并通过提供软件及硬件方法指引帮助做出更高效率的设计决策。另外应当了解独立监测电源的能力的重要性,例如在每个工程师的桌面上放置一个功率计。可实现节能导向设计的硬件及软件描述来自用于对能源行为建模的虚拟原型。 通过采用节能导向设计的方法、模拟能源行为和测量性能指标,工程师可以根据能源之星的实际使用数据估计不同应用的年度节能潜力。例如,个人计算机的一项基本数据是最大的节能潜力在于短时的闲置模式。同样,游戏机可提高效率的最大机会在于待机功耗。 尽管设备规范中包括低功率状态内容,但它们并未得以充分利用。通过模拟和实现智能电视、计算机、机顶盒和游戏机等产品应用的参考设计,可以确定真正的节能机会。 该项目下一步将会新增建筑等完整系统的描述,进一步研究如何在设计流中交换功率相关信息,研究范围超出芯片、电路板和产品之外。最后,Aggios团队将推动为在加州销售的每一款设备进行IEEE P2415能源建模。IEEE P2415是“能源比例电子系统的统一硬件抽象层”的非法规性标准,用于确定设备的能源特征和特性。以上就是降低插头载荷设备能耗的相关技术,希望能给大家参考。

    时间:2020-04-03 关键词: pi 插头 载荷

  • 线性光耦与非线性光耦型号概述

    线性光耦与非线性光耦型号概述

    什么是线性光耦?它有什么作用?线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。 开关电源中常用线性光耦,如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。 常用的4脚线性光耦(无反馈型线性光耦)有PC817A-C、PC111、TLP521等。 常用的6脚线性光耦有LP632、 TLP532、PC614、PC714、PS2031等。 常用的非线性光耦的型号 4N25 晶体管输出 4N25MC 晶体管输出 4N26 晶体管输出 常见光耦型号 4N27 晶体管输出 4N28 晶体管输出 4N29 达林顿输出 4N30 达林顿输出 4N31 达林顿输出 4N32 达林顿输出 4N33 达林顿输出 4N33MC 达林顿输出 4N35 达林顿输出 4N36 晶体管输出 4N37 晶体管输出 4N38 晶体管输出 4N39 可控硅输出 常见的高速光耦型号 100K bit/S: 6N138、6N139、PS8703 1M bit/S: 6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路) 10M bit/S: 6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路) 线性光耦的原理 线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的。这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 线性光耦的分类 线性光耦器件又分为两种:无反馈型和反馈型; 1.无反馈型线性光耦器件实际上是在器件的材料和生产工艺上采取一定措施(使得光耦器件的输入输出特性的非线性得到改善。但是,由于发光二极管和光电三极管的固有特性,改善十分有限。这种光耦器件主要用于对线性区的范围要求不大的情况,例如开关电源的电压隔离反馈电路中经常使用的PC816A和NEC2501H等线性光耦。由于开关电源在正常工作时的电压调整率不大,通过对反馈电路参数的适当选择,就可以使光耦器件工作在线性区。但由于这种光耦器件只是在有限的范围内线性度较高,所以不适合使用在对测试精度以及范围要求较高的场合。 2.另一种线性光耦是反馈型器件。其作用原理是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。与前面介绍过的普通光耦器件线性化使用的原理类似,只不过它在生产工艺上采取了一定措施,使同一片器件中的2个光耦的特性更加趋于一致。这种器件例如德州仪器公司曾经出品现已停产的TIL300A,CLARE公司生产的LOC系列线性光耦,惠普公司生产的HCNR200/201线性光耦等。 非线性光耦构建的模拟信号线性隔离电路 用非线性光耦替代线性光耦,首先需要考虑的问题是,采用两个独立的单路光耦还是采用一个双路光耦由于上面的公式3中的推导默认线性光耦的K 和K2相等,这样我们选用的两路光耦的物理特性最好一致,封装在一起的两路光耦比两个独立的单路光耦具有更好的一致特性,所以选用了双路光耦。 其次,既然信号已经隔离,那么隔离前后的集成电路的供电必须隔离,否则不能真正做到完全隔离。当然用非线性光耦做的隔离电路在布置印制板的时候不如线性光耦,因为处于非线性光耦一边的5,6脚和7,8脚上加了两组隔离的电源见图3)。 而用线性光耦做的印制板则可以将隔离电源完全布局在光电器件的两边然后根据线性光耦的参数,经过比较我们选用了TPP521-2,根据该光耦构建的隔离电路如下: 采样隔离电路主要由一个双路非线性光电耦合器、两个运放和电阻电容构成其中一路光耦的7脚用作输出,另一路光耦5脚作为反馈,反馈是用来补偿发光二极管时间温度特性的非线性,保证光敏三极管产生的输出信号与I I)发光二极管发出的光通里呈线性比例。 隔离电路中IR 调节输入运算放大器的输入偏置电流的大小.C起反馈作用。同时滤除了电路中的毛刺信号。避免发光二极管(U.ED 受到意外的冲击。但是。随着频率的提高发光二极管阻抗将变小电流增大增益随之变大。因而.C 的引入对通道在高频时的增益有一定影响,虽然减小C 的值可以拓展带宽。但是,会影响初级运算放大器的增益,同时初级运算放大器输出的较大毛刺信号不易被滤除。但对于我们目前的模拟信号采样频率不高的情况下,取0.47pk 的电容就足够了。 在采样电路调节过程中,输入电压有两种变化趋势,当输入电压Vin升高时,Vin大于B,和流经其电流的乘积,导致运放输出端电压升高,通过两个发光二极管的电流也随之增大、光敏三极管6 .5脚的电流也增大,这样反馈到1R 上的电流也增大,最终调节的结果是输入运放+,-端的电压相等,同时8.7脚电流也增大,通过采样电阻I 上的电压随之线性增大。 反之,当输入电压Vim降低时,运放输出端电压降低,通过发光二极管的电流也随之减小,与上类似,输出电压也随输入电压Vin 的降低成比例地减小。上面的推导都是假定所有电路都是工作在线性、理想范围内的,要想做到这一点需要对运放进行合理选型,并且仔细选择电阻的阻值: 运放可以是单电源供电或正负电源供电,上面给出的是单正电源供电的例子。为了使输入范围能够从0到Voc,需要运放能够满摆幅工作,另外,运放的工作速度压摆率不会影响整个电路的性能。由于光耦是电流驱动型器件其11:1)的工作电流为ImA-20mA,因此,运算放大器的驱动电流也必须达到20mA。我们选用的运算放大器IM 358 的电流驱动能力达40mA4。以上就是线性光耦的相关解析,希望能给大家帮助。

    时间:2020-04-03 关键词: 型号 线性光耦 非线性光耦

  • 稳压二极管与TVS管解析

    稳压二极管与TVS管解析

    什么是稳压二极管?它与TVS管的区别是什么?本文主要讲了稳压二极管的定义、原理、应用和TVS管的定义、应用以及稳压二极管与TVS管的区别。 稳压二极管介绍 稳压二极管,英文名称Zener diode,又叫齐纳二极管。利用pn结反向击穿状态,其电流可在很大范围内变化而电压基本不变的现象,制成的起稳压作用的二极管。 此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更高的稳定电压。 稳压二极管原理: 稳压二极管的伏安特性曲线的正向特性和普通二极管差不多,反向特性是在反向电压低于反向击穿电压时,反向电阻很大,反向漏电流极小。但是,当反向电压临近反向电压的临界值时,反向电流骤然增大,称为击穿,在这一临界击穿点上,反向电阻骤然降至很小值。尽管电流在很大的范围内变化,而二极管两端的电压却基本上稳定在击穿电压附近,从而实现了二极管的稳压功能。 稳压二极管应用: 1、典型的串联型稳压电路 在此电路中,三极管T的基极被稳压 二极管D稳定在13V,那么其发射极就输出恒定的13-0.7=12.3V电压了,在一定范围内,无论输入电压升高还是降低,无论负载电阻大小变化,输出电压都保持不变。这个电路在很多场合下都有应用。7805就是一种串联型集成稳压电路,可以输出5V的电压。7805-7824可以输出5-24V电压。在很多电器上都有应用。 2、电视机里的过压保护电路 115V是电视机主供电电压,当电源输出电压过高时,D导通,三极管T导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的电压使电视机进入待机保护状态。 3、电弧抑制电路 在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了。这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它。 TVS管介绍 TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10^-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。 TVS的反应速度比RC回路快10E-12s,可不用考虑TVS的击穿电压VBR,反向临界电压VWM,最大峰值脉冲电流IPP和最大箝位电压VC及峰值脉冲功率PP. 选择VWM等于或大于电路工作电压,VC为小于保护器件的耐压值,能测量最好(IPP),或估计出脉冲的功率,选功率较大的TVS。 TVS管的特性参数: 最大反向漏电流ID和额定反向关断电压VWM。VWM是TVS最大连续工作的直流或脉冲电压,当这个反向电压加入TVS的两极间时,它处于反向关断状态,流过它的电流应小于或等于其最大反向漏电流ID。 最小击穿电压VBR和击穿电流IR。VBR是TVS最小的雪崩电压。25℃时,在这个电压之前,TVS是不导通的。当TVS 流过规定的1mA电流(IR)时,加入TVS两极间的电压为其最小击穿电压VBR。按TVS的VBR与标准值的离散程度,可把TVS分为±5%VBR和±10% VBR两种。对于±5%VBR来说,VWM=0.85VBR;对于±10% VBR来说,VWM=0.81 VBR。 最大箝位电压VC和最大峰值脉冲电流。IPP当持续时间为20微秒的脉冲峰值电流IPP流过TVS时,在其两极间出现的最大峰值电压为VC。它是串联电阻上和因温度系数两者电压上升的组合。VC 、IPP反映了TVS器件的浪涌抑制能力。VC与VBR之比称为箝位因子,一般在1.2~1.4之间。 电容量C 是TVS雪崩结截面决定的、在特定的1MHZ频率下测得的。C的大小与TVS的电流承受能力成正比,C过大将使信号衰减。因此,C是数据接口电路选用TVS的重要参数。 最大峰值脉冲功耗PMPM是TVS能承受的最大峰值脉冲耗散功率。其规定的试验脉冲波形和各种TVS的PM值,请查阅有关产品手册。在给定的最大箝位电压下,功耗PM越大,其浪涌电流的承受能力越大;在给定的功耗PM下,箝位电压VC越低,其浪涌电流的承受能力越大。另外,峰值脉冲功耗还与脉冲波形、持续时间和环境温度有关。而且TVS所能承受的瞬态脉冲是不重复的,器件规定的脉冲重复频率(持续时间与间歇时间之比)为0.01%,如果电路内出现重复性脉冲,应考虑脉冲功率的“累积”,有可能使TVS损坏。 箝位时间TCTC是从零到最小击穿电压VBR的时间。对单极性TVS小于1&TImes;10-12秒;对双极性TVS小于是1&TImes;10-11 秒。 TVS管的四大应用: 1、TVS管在TN电源系统的应用 雷电过电压波、负载开关等人为操作错误引起的过电压容易通过供电线路侵入电气电子设备内部,造 成电气电子设备失效、误动作,甚至造成设备的永久性损坏,造成严重经济损失。通过在电源线路上安装浪涌吸收装置MOV和TVS,实施两级保护,并对L、N 线进行共模、差模保护。具体做法是在线路的前端安装MOV作为第一级SPD保护,泄放大部分雷电流,在线路的末端(设备前端)安装大功率TVS管作为第二 级SPD保护,进一步削弱过电压波幅值,将电网电压降至E/I安全耐压范围之内。要注意的是,MOV与TVS应达到电压和能量的协调与配合,AB之间的线 路长度不应小于5 m,否则应增加线路长度或安装退耦器件。 2、TVS管在网络信号线路的应用 TVS管不仅可以用于电源系统的浪涌防护,还可以用于信号线路的浪涌保护,采用气体放电管GDT与TVS管组合成信号浪涌保护器,其特点是反应快,漏流小,几乎对信号无损耗,可以对高速网络线路提供安全、可靠的保护。 3、TVS管在直流电源系统的应用 一台普通PC电脑的供电电源电路,市电AC 220 V经过变压器降压至AC 20 V,再经调制整流电路,输出DC 10 V 直流电源,接入负载。通过在变压器输出端安装双向瞬态电压抑制器TVS1,吸收L 及N 线的瞬时冲击脉冲电流,将电路电压箝制在安全电压水平,TVS1可以保护变压器后端整流器及其他电路元器件。在整流器后的直流电源输出端安装单向瞬态电压 抑制器TVS2,用于保护直流负载免受过电压电电流冲击。 4、TVS管在晶体管电路的应用 晶体三极管作为电流控制型器 件,是电子集成电路中的重要组成部分,可分为NPN 管和PNP 管两类,应用于开关电路、放大电路和稳压电路。为了使晶体管电路免受ESD/EFT(静电放电/电快速瞬变脉冲群)等浪涌电压的干扰,在电路的输入 端和输出端分别加入TVS1、TVS2进行保护。 稳压二极管与TVS管的区别 电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制TVS(TRANSIENT VOLTAGE SUPPRESSOR) 或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。 如果是使用的话,TVS有二极管类,和压敏电阻类。我个人认为压敏电阻类更有优势,目前广泛用于手机,LCD模组,及一些比较精密的手持设备。特别是出口欧洲的产品一般都要加,来作为静电防护的主要手段之一。TVS和齐纳稳压管都能用作稳压,但是TVS管齐纳击穿电流更小,大于10V的稳压只有1mA,相对来说齐纳二极管击穿电流要大不少,但是齐纳二极管稳压精度可以做的比较高。 在电路中一般工作于反向截止状态,此时它不影响电路的任何功能。TVS在规定的反向应用条件下,当电路中由于雷电、各种电器干扰出现大幅度的瞬态干扰电压或脉冲电流时,它在极短的时间内(最高可达到1&TImes;10-12秒)迅速转入反向导通状态,并将电路的电压箝位在所要求的安全数值上,从而有效的保护电子线路中精密元器件免受损坏。干扰脉冲过去后,TVS又转入反向截止状态。 由于在反向导通时,其箝位电压低于电路中其它器件的最高耐压,因此起到了对其它元器件的保护作用。TVS能承受的瞬时脉冲功率可达上千瓦,其箝位时间仅为1ps。TVS根据极性可分为单向和双向TVS。单向TVS一般适用于直流电路,双向TVS一般适用于交流电路中。由于TVS起保护作用时动作迅速、寿命长、使用方便,因此在瞬变电压防护领域有着非常广泛的应用。以上就是稳压二极管TVS管的区别,希望能给大家帮助。

    时间:2020-04-03 关键词: 二极管 稳压 tvs管

  • 硬板PCB和软板FPC对比

    硬板PCB和软板FPC对比

    什么是硬板PCB和软板FPC?他们有什么区别?有关PCB,就是所谓印制电路板,通常都会被称之为硬板。是电子元器件当中的支撑体,是很重要的电子部件。PCB一般用FR4做基材,也叫硬板,是不能弯折、挠曲的。PCB一般应用在一些不需要弯折请要有比较硬强度的地方,如电脑主板、手机主板等。 而FPC,其实属于PCB的一种,但是与传统的印制电路板又有很大的出入。将其称之为软板,全称为挠曲性电路板。FPC一般用PI做基材,是柔性材料,可以任意进行弯折、挠曲。FPC一般营运在需要重复挠曲及一些小部件的链接,但是现在却不仅仅如此,目前智能手机正在想可弯曲防止,这就需要用到FPC这一关键技术。 其实FPC不仅是可以挠曲的电路板,同时它也是连成立体线路结构的重要设计方式,这种结构搭配其他电子产品设计,可以构建出各式各样不同的应用,因此,从这点来看,FPC与PCB是非常不同的。 对于PCB而言,除非以灌膜胶的方式将线路做出立体的形式,否则电路板在一般状况下都是平面式的。因此要充分利用立体空间,FPC就是一个良好的解决方案。以硬板而言,目前常见的空间延伸方案就是利用插槽加上介面卡,但是FPC只要以转接设计就可以做出类似结构,且在方向性设计也较有弹性。利用一片连接FPC,可以将两片硬板连接成一组平行线路系统,也可以转折成任何角度来适应不同产品外形设计。 FPC当然可以采用端子连接方式进行线路连接,但也可以采用软硬板避开这些连接机构,一片单一FPC可以利用布局方式配置很多的硬板并将之连接。这种做法少了连接器及端子干扰,可以提升信号品质及产品信赖度。图所示为多片PCB与FPC架构出来的软硬板。以上就是硬板PCB和软板FPC的区别,希望能给大家帮助。

    时间:2020-04-02 关键词: 电路板 PCB fpc

  • 电子元器件对人体的危害有哪些?

    电子元器件对人体的危害有哪些?

    电子元器件处处可见,那么它有哪些对人体有害的物质?毒性物质是世界上大部分国家都希望杜绝的。各国专家曾在日内瓦共同讨论应该把哪些化学品纳入禁用清单,其中就提及电子元件致癌这一内容。本文将为你介绍电子元器件中有哪些危害人体健康的化学品。 多氯联苯:致癌物质 "肮脏的一打"中最知名的工业用有害化学品当属多氯联苯(PCBs)。上世纪70年代美国就已禁止使用该类物质,但许多其它国家一直到2001年,即《斯德哥尔摩公约》签署之年,才禁止生产以及在电子元件中使用这类物质的。多氯联苯属于致癌物质,容易累积在脂肪组织,造成脑部、皮肤及内脏的疾病,并影响神经、生殖及免疫系统。电子废弃物中往往还有含多氯联苯的电容和电机,与多氯联苯接触较长时间,可直接导致如脱发、皮肤过敏等各种中毒症状,但其首要危害还是其致癌性及其对神经系统和生殖能力的损害。 多氯联苯曾广为应用。鉴于其不易燃、沸点高、不导电、化学性质稳定等特性,所以多氯联苯非常适合做绝缘材料,尤其是用于各种电器、电机产品不可或缺的电容。除此之外,多氯联苯也用于生产塑料和橡胶产品以及色素,甚至复印纸。 汞:3类致癌物 汞是化学元素,俗称水银。国际上有一个专门的公约对其进行规管,即2013年推出的《水俣公约》。该公约以日本一个渔村命名,因为上世纪50年代那里的汞污染严重,致使成千上万人中毒。过去,水银用于体温计,用于电子开关。今天这类用途已广泛被禁,但荧光灯、节能灯依然要用到水银。不过随着近年来先进半导体材料以及LED灯的开发,人们已经可以完全放弃使用水银了。 不过有些金矿还在继续使用水银萃取金子。这样的金矿最后留下的往往是一片严重污染的荒地。汞的另一个污染源是未经净化处理的烟气,如燃烧褐煤时放出的烟气。烟气中所含的气态汞,冷却后降落到大地以及海洋,被鱼类吸收,储存在其脂肪中,最后通过食物链,进入人体。水银轻度中毒症状包括头疼、恶心、胸痛,重度则会影响到人体的神经中枢系统,引起精神障碍,引发神智失常、幻觉、肌肉麻痹、痉挛,浓度达到150至300毫克时则可致命。 汞常温下即可蒸发,汞蒸气和汞的化合物多有剧毒(慢性)。汞据估计全世界每年耗用的汞有 22% 是用在电子电气产品中, 主要被用于纯平显示器的照明装置中, 也被用在旧电脑的主机开关和继电器里, 还用于温度计、传感器、阻滞器、转换器、医疗设备、电灯、手机及电池中。 铜:金属物质 铜是人类最早使用的金属之一。早在史前时代,人们就开始采掘露天铜矿,并用获取的铜制造武器、工具和其他器皿,铜的使用对早期人类文明的进步影响深远。据了解,电子垃圾中含有塑料,铜等700多种物质,其中既包含具有很大回收利用价值的铜等冶金学上品味较高的矿种(印刷线路板中的铜含量可达40% 以上,也包含重金属及有机污染物(其中有50%对人体有害)。 铅:2B类致癌物 铅是柔软和延展性强的弱金属,有毒,也是重金属。可用于建筑、铅酸蓄电池、弹头、炮弹、焊接物料、钓鱼用具、渔业用具、防辐射物料、奖杯和部份合金,例如电子焊接用的铅锡合金。铅主要用于印刷电路板或阴极射线管(CRT)中。 镉:优良金属 镉是一种吸收中子的优良金属,制成棒条可在核反应堆内减缓链式裂变反应速率,而且在锌-镉电池中颇为有用,大多用来保护其他金属免受腐蚀和锈损,如电镀钢、铁制品、铜、黄铜及其他合金。镉主要存在于电阻器、红外线发生器和半导体等中, 也作为塑料固化剂, 在旧 CRTs 中使用。 钡:碱土金属元素 钡是碱土金属元素,是周期表中ⅡA族的第六周期的元素,是碱土金属中活泼的元素,钡在自然界中最常见的矿物是重晶石(硫酸钡)和毒重石(碳酸钡),二者皆不溶于水。钡被用于电脑显示器、弹簧、继电器和连接器中, 也曾用于计算机主板中。 铍:致癌物 铍是一种灰白色的碱土金属,铍及其化合物都有剧毒。铍既能溶于酸也能溶于碱液,是两性金属,铍主要用于制备合金。铍轻而坚硬、电热良导体且没有磁性的特性使得被广泛用于电子产品中。以上就是电子元器件中对人体有害的物质介绍,希望能给大家帮助。

    时间:2020-04-02 关键词: 电子 元器件 化学品

  • 旁路电容器焊接解析

    旁路电容器焊接解析

    什么是电容?理想的旁路电容器焊接位置在哪里?根据电路中综合因素来看,旁路电容器除了具有减少脉冲电流,稳定电源电压能力之外,更重要的是它的电容量、电压值和正常工作的额定温度以及在电路板中放置(焊接)的位置。通常在VCC和接地之间,电容起到作用是提供一个低阻抗的路径以便使交流电可以通过直流电路直接接地。电容同时也扮演一个储能装置,储存电荷用于稳定负载变化而引起的电压波动。 尽管电容能够解决不少电路问题,但错误电容选型或不当的电容放置位置将会导致整个电路出现电能的损耗,干扰电流、或者使其处于不稳定的状态。除了正常工作的额定值、型号以及电容的大小尺寸之外,工程师更应该密切注意的是旁路电容在电路中的放置位置。 理想的电容器焊接位置 要综合各种因素才能找到电容放置的理想位置,这些因素包括整个开发板的布局设计、芯片或者其他零部件的功能,PCB板设计层数以及电路板的尺寸大小等等。电路板设计者必须能够解决每个PCB板对电容器独特的要求, 电容器错误选型或放置在电路板位置不对往往会导致意想不到的的问题或是电路故障。 为确保整个板子能够实现最佳性能,以下是在电路板上放置旁路电容器的最佳做法。 放置旁路电容器的理想位置尽可能靠近元器件的电源引脚。这样做的目的是为了元器件在通断电的瞬间,避免电路中有大电流产生损坏元器件。同时让交流干扰电流直接通过一个低阻抗电路接地。如果把电容放置在离元器件电源引脚更远的位置,由于电感效应,额外的走线长度会产生额外的串联电感,从而降低旁路电容器的自感谐振频率和有用带宽。 在通常的实际应用中,电源和电路元件(如IC)之间总是有一定的距离。 理想情况下,IC和功率调节器之间的铜线路被视作为零阻抗的线路。 当然现实中是不太可能的,这条线路并非零阻抗,有阻值意味着从电源到芯片可用的电压和电流就会受此影响而有所变化。 电路板中铜迹线,就像现实中电线一样,带有一定的电阻值和电感效应。相比阻值,更应该被关注的是电路板中铜迹线的电感效应对真个电路板的影响,特别是它对电源功率传输有巨大的影响。 当给IC或有源器件通电瞬间,这个电感效应会消除或者减缓从电源发出大电流(尖峰电流)对元器件冲击。 理想情况下,所有的电路板的铜迹线在电流通过时应该是没有任何阻抗或者延迟的。 然而,在实际电路中,电感大小与电流的变化速率是相对的,这将阻碍了电流大小不能按照设备要求快速调高或者降低。 对通断电过程有延迟的影响,输出信号波形因此可能也会失真。 一般来说,随着电容器与元器件引脚之间的铜迹线长度越长产生电感效应就越明显,这将影响电容器的谐振频率,往往会导致窄带宽信号而无法抑制所有噪声。所以最小化走线长度可减少电感,电阻和整体阻抗。 宽带频率——多个电容组合 不同种类的电容器能够抑制特定的频率范围内的干扰电流,但是对于在宽带频率范围内工作的器件来说,期望单个电容能够满足需求很显然是不现实的。最好的解决方案就是同时并行多个针对不同带宽值的电容器。 如大电容将为低频提供低阻抗接地线路,而较小电容将处理较高频率的干扰电流。 通过正确电容器选型和布局,设计人员所有频率的电流提供合适的低阻抗线路、当布局电容位置时,最好按照电容值得大小升序排列它们,从最靠近电源引脚电容值最小的电容开始,然后按照升序顺序添加较大的电容。 相比大电容较慢的充放电速度,小电容充放电速度更快因此对高频电流信号响应很快, 由于大电容在充放电速度上需要更多的时间,因此对高频电流信号无法及时的响应,不过在较低频率下则工作良好。 所以通常情形下在使用一大一小两种电容两个并行使用,如把0.1uF电容放置在电源引脚的旁边,紧随其后的便是电容值为10uF电容的放置。 由于电路板的铜迹线或多或都会产生阻抗和电感效应,尽可能的缩小铜迹线的长度,否则将增加干扰电流信号的整体阻抗。下图中,电容器可以被放置在SMT元器件下面,不过是在整个电路板的另一面,这种直接放在元器件下面的做法,是为了尽量缩短铜迹线的长度减少电感和阻抗。 最好将电容器直接放在电路板的另一侧,相对电源、接地引脚以及芯片等器件来说。 把旁路电容器相对元器件放置在电路板另一侧,不仅释放电路板多余的位置留给更多让板子过孔的空间。而且由于电容可以直接连接到元器件的接地引脚,这也尽可能缩短了接地线路的长度。 对于有多个电源引脚的电子器件,每个电源引脚至少要有一个旁路电容与之相接。尽管这个电子器件只需一到两个电容器就可以工作,但最好为每个电源引脚添加至少一个旁路电容,并尽可能缩短两者之间的距离。 当电子器件在不同功率输出快速切换时,这种放置旁路电容器做法可以保持整个电子装置的运行稳定。 如果器件工作频率很宽,建议按升序原则添加多个合适的并行电容器。 接地 设计人员应设计出最近的接地线路或引脚线路,以尽量减小电感,并使交流干扰信号更容易通过接地而导出。 要达到此目的,有效方法是通过缩短的走线长度或过孔来降低旁路电容接地一端的阻抗。 总结 电容放置的位置尽量靠近电子器件的电源引脚,这将减少两者之间线路的电感效应。当器件的电源引脚需要多个并行电容时,请按照升序(电容值的大小)依次焊接电容,最小电容最靠近器件的电源引脚 相对芯片尽可能将电容器放置其下面,即是电路板的另一侧。当线路的距离足够短时,可以将电容的另一端直接连接到器件的接地引脚。 若不是,要用最短的走线方式或通过通孔将其直接接地。 结论 旁路电容的正确选型和使用是减少电子电路中不必要的干扰信号的最有效方法。 在电源和接地引脚之间连接正确型号的电容可为交流干扰电流创建一条低阻抗路径导出接地。 它还通过充放电功能来防止电路电压骤降,抑制脉冲电流的产生,确保电路中没有干扰电流的产生。 除了正确选择电容器型号之外,电容器在电路中位置对确保旁路正常工作是至关重要。最好的做法是将电容尽可能靠近器件的电源引脚。以上就是理想的旁路电容器焊接位置,希望能给大家帮助。

    时间:2020-04-02 关键词: 焊接 旁路 电容器

  • 浪涌电压产生因素

    浪涌电压产生因素

    什么是浪涌电压?它有什么影响?电路在遭雷击和在接通、断开电感负载或大型负载时常常会产生很高的操作过电压,这种瞬时过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。例如直流6V继电器线圈断开时会出现300V~600V的浪涌电压;接通白炽灯时会出现8~10倍额定电流的浪涌电流;当接通大型容性负载如补偿电容器组时,常会出现大的浪涌电流冲击,使得电源电压突然降低;当切断空载变压器时也会出现高达额定电压8~10倍的操作过电压。 浪涌电压现象日趋严重地危及自动化设备安全工作,消除浪涌噪声干扰、防止浪涌损害一直是关系到自动化设备安全可靠运行的核心问题。现代电子设备集成化程度在不断提高,但是它们的抗御浪涌电压能力却在下降。在多数情况下,浪涌电压会损坏电路及其部件,其损坏程度与元器件的耐压强度密切相关,并且与电路中可以转换的能量相关。 浪涌电压产生原因? 浪涌也叫突波,就是超出正常电压的瞬间过电压,一般指电网中出现的短时间象“浪”一样的高电压引起的大电流。从本质上讲,浪涌就是发生在仅仅百万上之一秒内的一种剧烈脉冲。浪涌电压的产生原因有两个,一个是雷电,另一个是电网上的大型负荷接通或断开(包括补偿电容的投切)时产生的。 (1)雷电是自然界发生的极为强烈的电磁暂态过程。主要通过两个个渠道对电力自动化设备产生影响。一是雷电直接击中变电站或调度中心的避雷针、避雷线,产生的瞬变电磁场对周围空间范围的电子设备的电磁作用,对封闭的金属回路产生压电流,对开口的金属回路产生感应电动势。由于雷电电磁脉冲的作用十分强烈,感生的电压可能很高。经地线泄放入地的雷电流引起地网电压升高,在接地系统中各接地点间产生很大的电压差,它们都可能对自动化设备造成干扰,轻则影响正常运行,严重的则会引起设备损坏。二是雷电在线路上空的雷云之间放电,或对线路附近的大地放电,都会使线路因电磁感应产生雷电冲击波或浪涌电压,这种冲击波会沿着线路入侵到与之相连拉电力自动化设备,造成工作错误或设备损坏。若雷电直接击中线路时,产生的浪涌电压更为强烈,危害更大。 (2)当某些大容量的电气设备接通或断开时间,由于电网中存在电感,将在电网产生“浪涌电压”,从而引发浪涌电流。一般不管设备容量大小,都会存在浪涌电压,问题是小容量的设备产生的浪涌电压较小,不会产生多大的危害,因此常常被人们所忽略。在脱线变换器启动期间,因对大容量电容器充电会产生一个大电流。这个大电流比系统正常电流大几倍乃至几十倍(即所谓浪涌电流),而这可能使AC线路的电压降落,从而影响连接在同一AC线路上的所有设备的运行,有时会烧断保险丝和整流二极管等元件。 操作方式和故障形式的多样性决定了操作过电压的不同类别,主要有:中性点不接地系统中的弧光接地过电压,空载线路的合闸过电压,空载线路、空载母线和电容器分闸时的开断电容负载过电压,空载变压器、电抗器和电动机分闸时的开断电感负载过电压等等。以上就是浪涌电压的概述,希望能给大家帮助。

    时间:2020-04-02 关键词: 电压 电流 浪涌

  • 新型多通道光谱传感器概述

    新型多通道光谱传感器概述

    什么是光谱传感器?它有什么用途?AS7341提供多通道测量和光源闪烁检测功能,灵敏度高,尺寸小巧,有助于提升颜色分析、自动白平衡和颜色匹配等应用的性能,带来更高价值。 中国,2019年 1月9日,全球领先的高性能传感器解决方案供应商艾迈斯半导体(ams AG,瑞士股票交易所股票代码:AMS),今日推出一款微型光谱传感器芯片,能够为便携式移动设备提供实验室级多通道颜色分析功能。在手机或附件等终端产品中,艾迈斯半导体推出的新型AS7341与同类竞争产品相比,能够在更广泛的照明条件下提供更准确的光谱测量。新型传感器尺寸小巧,因而更容易集成到手机和其他便携设备中。 “AS7341是小封装光谱传感器技术取得突破的代表性产品,适合安装在手机或消费设备中。它在同类产品中尺寸最小,提供11个测量通道,与面向消费类市场的其他多通道光谱传感器相比,其光灵敏度更高”,艾迈斯半导体光学传感器业务线高级营销经理Kevin Jensen表示。 AS7341芯片提供精确的光谱测量,有助于实现更出色的自动白平衡、更可靠的光源识别,并且集成光源闪烁检测功能,能够为消费者带来诸多好处,包括提升手机相机的性能。该技术能够更准确地再现色彩,最大限度地减少环境光源失真,从而获得更清晰逼真的照片。利用PANTONE®配色系统,AS7341还可以让消费者按照自己的颜色喜好使用手机对织物等物体进行配色。 Variable推出的Spectro 1™便携色度计可以展示出AS7341提升颜色测量性能的能力。Variable已在Spectro 1中采用AS7341,以合理的消费价格,提供专业级颜色测量。该产品可以在400nm至700nm可见光谱范围内,以10nm增量提供高度可重复的光谱曲线数据。这种功能以前只有专业级分光光度计才具备,但其成本是便携式Spectro 1的10倍以上。 “在我们看来,没有光谱传感器IC能够像艾迈斯半导体的AS7341一样,以如此小巧的封装尺寸提供与其媲美的多通道功能”,Variable首席执行官George Yu表示。“小尺寸是关键优势;与手机应用集成是Spectro 1的亮点之一,我们设计的产品尺寸要足够小,确保能够单手轻松操控。AS7341能够提供多通道光谱测量,这也意味着Spectro 1用户绝不会遇到同色异谱对错误匹配的情况。” AS7341是一款完整的光谱传感系统,采用3.1mm x 2.0mm x 1.0mm LGA超小型孔径封装。它是一款11通道设备,能够非常精确地描述直接测量光源或反射表面的光谱特性。其中8个通道覆盖可见光光谱中的8个等距部分。该设备还有一个近红外光通道、一个纯信道以及一个专用于检测典型环境光闪烁的通道(频率为50Hz至1kHz)。 除了优化摄像头图像外,AS7341光谱传感器还支持多种应用,如材料或液体的一般颜色测量、肤色测量等。 AS7341将在2019年CES(内华达州拉斯维加斯,2019年1月8日至11日)上展出,样品目前已开始供货。2月开始批量生产。订购量达10,000片时单价为2.00美元。 现已推出适用于AS7341光谱传感器的评估板。以上就是光谱传感器的概述,希望能给大家帮助。

    时间:2020-04-02 关键词: 传感器 测量 光谱

  • 元器件损坏可能因素

    元器件损坏可能因素

    什么是电子元器件?他们可能损坏的因素有哪些?其实电子电路的基本单位都是电子元器件,这些器件都是以硬件的形式存在的,它们都有各自的电气参数,如电压电流及功率特性等。 因此,元器件是最易损坏的物品,但其故障却是有规律可循的。一般的故障表现为电气参数损坏和物理损坏两类,那么电气参数的损坏又包含电压电流超过额定值导致的损坏,物理的损坏包括断裂,变形,阻值参数变化等表现形式。 一、电阻损坏的特点 电阻是电器设备中数量最多的元件,但不是损坏率最高的元件。电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。 前两种电阻应用最广,其损坏的特点:一是低阻值(100Ω以下)和高阻值(100kΩ以上)的损坏率较高,中间阻值(如几百欧到几十千欧)的极少损坏;二是低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。 线绕电阻一般用作大电流限流,阻值不大。圆柱形线绕电阻烧坏时有的会发黑或表面爆皮、裂纹,有的没有痕迹。水泥电阻是线绕电阻的一种,烧坏时可能会断裂,否则也没有可见痕迹。保险电阻烧坏时有的表面会炸掉一块皮,有的也没有什么痕迹,但绝不会烧焦发黑。根据以上特点,在检查电阻时可有所侧重,快速找出损坏的电阻。 二、电解电容损坏的特点 电解电容在电器设备中的用量很大,故障率很高。电解电容损坏有以下几种表现: 1、是完全失去容量或容量变小; 2、是轻微或严重漏电; 3、是失去容量或容量变小兼有漏电。 查找损坏的电解电容方法有: (1)看:有的电容损坏时会漏液,电容下面的电路板表面甚至电容外表都会有一层油渍,这种电容绝对不能再用;有的电容损坏后会鼓起,这种电容也不能继续使用; (2)摸:开机后有些漏电严重的电解电容会发热,用手指触摸时甚至会烫手,这种电容必须更换; (3)电解电容内部有电解液,长时间烘烤会使电解液变干,导致电容量减小,所以要重点检查散热片及大功率元器件附近的电容,离其越近,损坏的可能性就越大。 三、二极管、三极管等半导体器件损坏的特点 三极管的损坏一般是PN结击穿或开路,其中以击穿短路居多。 此外还有两种损坏表现: 一是热稳定性变差,表现为开机时正常,工作一段时间后,发生软击穿;另一种是PN结的特性变差,用万用表R×1k测,各PN结均正常,但上机后不能正常工作,如果用R×10或R×1低量程档测,就会发现其PN结正向阻值比正常值大。 测量二、三极管可以用指针万用表在路测量,较准确的方法是: 将万用表置R×10或R×1档(一般用R×10档,不明显时再用R×1档)在路测二、三极管的PN结正、反向电阻,如果正向电阻不太大(相对正常值),反向电阻足够大(相对正向值),表明该PN结正常,反之就值得怀疑,需焊下后再测。这是因为一般电路的二、三极管外围电阻大多在几百、几千欧以上,用万用表低阻值档在路测量,可以基本忽略外围电阻对PN结电阻的影响。 四、集成电路损坏的特点 集成电路内部结构复杂,功能很多,任何一部分损坏都无法正常工作。集成电路的损坏也有两种:彻底损坏、热稳定性不良。彻底损坏时,可将其拆下,与正常同型号集成电路对比测其每一引脚对地的正、反向电阻,总能找到其中一只或几只引脚阻值异常。 对热稳定性差的,可以在设备工作时,用无水酒精冷却被怀疑的集成电路,如果故障发生时间推迟或不再发生故障,即可判定。通常只能更换新集成电路来排除。以上急速电子元器件可能损坏的因素,希望能给大家帮助。

    时间:2020-04-02 关键词: 电子 元器件 损坏

  • 电子管放大器制作要点

    电子管放大器制作要点

    什么是电子管放大器?如何制作?下面介绍一下电子管放大器的制作工艺与调试内容,我觉得在日常工作中制作电子管放大器时应重点把握以下四个方面。 一、供电系统 供电系统的优劣赢接影响到系统的稳定性和功放电路各项性能的良好发挥。 1、电源变压器 在电子营放大器中,功放管(耗电大户)电源变压器索取的是高电压与小电流,通常情况下其功率就取在功放满功率输出时的2倍以上。对电源变压器应重点加强屏蔽措施,因为高电压输出的电源变压器比低电压输出的电源变压器的辐射干扰能力大得多。 2、整流、滤波电路 在电子管放大器电路中,一般做法是整个电路共用一组直流电源。整流器的耐压和整流电流应选择得高一些,耐压一般应在电源电压的l格以上,通过电流应在整机满功率时输出电流的2倍以上。直流电源滤波应尽量选择1T型、I.C型以及滤波性能优异的并联谐振型滤波器或设置电子稳压电路。因为电子管功放中的主电压通常设计得较高(一般在200V以上),所以必须注意在整流、滤波后的直流电源与地间并联一只合适功率与阻值的电阻(泄放电阻),以便在关机状态下对整流器进行调整、检修时及时泄放掉滤波电容内存储的电荷。另外还应充分做好各级之间的电源隔离与退耦工作。 3、灯丝电源 在电子管放大器中,灯丝的50Hz干扰早已判为是造成整机信噪比过低的罪魁祸首,解决问题的途径有三:一是采用直流电压为灯丝供电;再者就是灯丝交流电压供电,但必须采用悬浮供电的方式。 做法是把变压器次级为灯丝供电绕组的中心抽头接地,在灯丝电压输出端子之间加入交流声平衡电路,即在两端子间跨接一只阻值合适的线绕电位器,将其中心滑动片接地,通过调整此交流声平衡电位器来达到降低或消除交流声的目的;三是将电子管灯丝任意一端接地,另一端接变压器灯丝绕组的一个端点(假设此端为A,另一端为B接地),通过教变市电交流插头插入电源插座的方向和A、B两点之闻的交换,此时监听扬声器中50Hz交流声的干扰会出现明显的变化。当判定某种接法的交流声最小时,即可将此连接方式固定下来,并记住交流电源插头插入电源插座中的方向。然后再通过仔细改变灯丝绕组接地端的接地位置,以把50Hz交流声干扰降至极限为最终目的。 二、功放电路 1、电子管输入级、前级或推动级可选用常见的6N系列的管子,如6N1、6N2、6N3、6N11、6N8P等,功放级可以使用性能指标较高的6P1、6P14、6P15、6P3P以及FU7、FU-25等型号的电子管。 2、耦合电容 耦合电容应尽量选择高耐压值、低漏电流及无极性的CBB电容或其他优质电容,且其容量一般选择在0.1μF~1μF之间为宜。 3、阳极电阻 电子管阳极电阻的阻值在其阳极电压确定后也随之确定。在保证阻值符合管子正常工作的前提下,其功率电应留出相当的余地,以减少在工作时的发热量。 4、栅极电阻 栅极电阻的作用是为目标管传递偏压。为了提高整机信噪比,此电阻应选用较高质量的金属膜电阻,其功率可以使用小一些的。 5、阴极电阻 在电子管的阳极电压和栅偏压确定以后,其阴极电阻的阻值决定着该管阳极电流的大小,选取时应尽量使用推荐值,阴极电阻的功率应选择得大一些。 6、输出变压器 性能的优劣对整机有着极大的影响。建议购买有知名度的成品输出变压器(且有屏蔽罩附售),应采用分层、分段及交叉绕制的方法精心制作。 三、制作工艺 1、结构与布局 通常情况下,电子管机一般都设计成金属基座并且为敞开式结构。即电子管、电源变压器、输出变压器以及滤波电容等体积较大的器件安置在基座的上部,而其他小体积的阻容件及连接导线则在基座内部设置。 在安排各元器件在基座上(内)部的位置时,应遵循音频信号由小到大的顺序作合理布置,不可将大、小信号的元器件交叉设置,以免引起“交叉感染”。一般做法是,基座最前方是信号输入(信号输入座也可用屏蔽线引到机后安装)电路,再按照信号流程将元器件依次向后排列安放。 2、焊接与布线 在进行各元件的焊接时,采取传统而又发烧的搭棚焊接工艺。即直接将元器件和各部引线焊接于电子管座相应的管脚上。在两焊接点跨度较大时应加入相应的支撑(如塑料支架或双面胶带)与过渡(如接线板)物体。在元器件上机以前,应该用数字三用表对元器件进行严格的测试与筛选,保证所选元器件参数与设计值相符。再把选中的元器件引脚上的氧化层用锋利的刀片刮净并做搪锡处理。还应注意尽量将元件引脚剪短,以防引入干扰。在用导线进行元器件之间的连接时,注意电源引线应尽量避开音频信号通道,以防电源辐射造成音频信号的劣化。另外机内的交流电源线(包括交流供电时的灯丝电源线)应作绞合处理。交、直电压与电压、电流不同的电源引线不可以平行设置或绞合在一起,而是二者应尽量远离或作交叉设置。再者就是机内连接电子管各极的引线应以不同颜色(阳一红、黄一栅、绿一阴、黑一地)加以区分,以方便辨认并以短、粗为宜。机内连线在不相互影响的前提下用尼龙扣收紧并做合理固定。 3、屏蔽措施 电源变压器和输出变压器是整机中最大的电磁干扰源,要利用金属物体将其与其他器件隔离或作屏蔽处理。同时,机内音频信号传输中两点的间距在超过20mm时,就应该使用质量上乘的双芯屏蔽线作为级间连接,并且做到屏蔽层单端接地。担任信号输入与前级放大的管子应使用专用金属屏蔽罩罩住,以防止外界杂散电场的袭击。 整机最好采取一点接地方式,具体做法是除电路中零电位的一根引线与机壳相通之外,电路中其他部位不得与机壳有任何相通或阻值过小之处(包括信号输入与功率输出端子)。并且此接地线是从各单元板上用粗壮的黑色导线以最短的距离汇集于一点并就近接地。经验得知,电子管放大器的接地点在一般情况下是选择在整流滤波电路或信号输入座附近。 四、系统调试 首先在不插入电子管的情况下接通交流电源并将电源开关扳至开启位置。探察(注意方法,勿遭电击)机内有无冒烟及温度过高之处,同时利用万用表测量电、路中各关键点交直流空载电压值,并与设计电压值相比较,如果上述检查确无异常情况,可将整机电源切断,待几分钟后,再把各电子管插入相应位置并在功放两输出端接上假负载(与输出变压器次级输出阻抗相匹配的大功率感性负载)开机(禁止空载开机,以免击穿价昂的输出变压器)。开机后(手不要离开电源开关),及时审视机内有无异常情况,并观察电子管灯丝是否正常点亮。同时用万用表测量整机电流和各电子管的阳极电压、电流及栅负压是否在设计值以内。 在上述步骤走完之后,下一步就可以撤去假负载,接人扬声器(关机操作)进行下面更为简单的调试。在开机后如监听到扬声器中有交流声或高频噪声干扰,一般是电源滤波及退耦不良、电路接地不好或位置不正确以及屏蔽措施不得力。可以通过提高电源滤波及退耦的能力、改善地线的接地状况或改变其接地位置以及加强电磁屏蔽等措施加以克服。以上就是电子管放大器的制作方法,希望能给大家参考。

    时间:2020-04-02 关键词: 电阻 放大器 电子管

  • 常用抗干扰技术解析

    常用抗干扰技术解析

    电路有干扰怎么办?常用抗干扰技术有哪些?在电子测量装置的电路中出现的、无用的信号称为噪声,当噪声影响电路正常工作时,该噪声称为干扰。信号传输过程中干扰的形成必须具备三项因素,即干扰源、干扰途径以及对噪声敏感性较高的接收电路。因此消除或减弱噪声干扰的方法可以针对这三项中的其中任意一项采取措施。在传感器检测电路中比较常用的方法,是对干扰途径及接收电路采取相应的措施以消除或减弱噪声干扰。下面介绍几种常用的、行之有效的抗干扰技术。 1、屏蔽技术 利用金属材料制成容器.将需要保护的电路包在其中,可以有效防止电场或磁场的干扰,此种方法称为屏蔽。屏蔽又可分为静电屏蔽、电磁屏蔽和低频磁屏蔽等。 2、静电屏蔽 根据电磁学原理,置于静电场中的密闭空心导体内部无电场线,其内部各点等电位。用这个原理,以铜或铝等导电性良好的金属为材料,制作密闭的金属容器,并与 地线连接,把需要保护的电路值r其中,使外部干扰电场不影响其内部电路,反过来,内部电路产生的电场也不会影响外电路。这种方法称为静电屏蔽。例如传感 嚣测量电路中,在电源变压器的一次侧和二次侧之间插入一个留有缝隙的导体,并把它接地,可以防止两绕组之问的静电耦合,这种方法属于静电屏蔽。 3、电磁屏蔽 对于高频干扰磁场,利用电涡流原理,使高频干扰电磁场在屏蔽金属内产生电涡流,消耗干扰磁场的能量,涡流磁场抵消高频干扰磁场,从而使被保护电路免受高频 电磁场的影响。这种屏蔽法称为电磁屏蔽。若电磁屏蔽层接地,同时兼有静电屏蔽的作用。传感器的输出电缆一般采用铜质网状屏蔽,既有静电屏蔽又有电磁屏蔽 的作用。屏蔽材料必须选择导电性能良好的低电阻材料,如铜、铝或镀银铜等。 4、低频磁屏蔽 干扰如为低频磁场,这时的电涡流现象不太明显,只用上述方法抗干扰效果并不太好,因此必须采用采用高导磁材料作屏蔽层,以便把低频干扰磁感线限制在磁阻很 小的磁屏蔽层内部。使被保护电路免受低频磁场耦合干扰的影响。这种屏蔽方法一般称为低频磁屏蔽。传感器检测仪器的铁皮外壳起低频磁屏蔽的作用。若进一步 将其接地,又同时起静电屏蔽和电磁屏蔽的作用。 基于以上三种常用的屏蔽技术,因此在干扰比较严重的她方,可以采用复合屏蔽电缆,即外层是低频磁屏蔽层。内层是电磁屏蔽层.达到双重屏蔽的作用。例如电容式传感器在实际测量时其寄生电容是必须解决的关键问题,否则其传输效率、灵敏 度都要变低。必须对传感器进行静电屏蔽,而其电极引出线采用双层屏蔽技术,一般称之为驱动电缆技术。用这种方法可以有效的克服传感器在使用过程中的寄生 电容。 5、接地技术 接地技术是抑制干扰的有效技术之一,是屏蔽技术的重要保证。正确的接地能够有效地抑制外来干扰,同时可提高测试系统的可靠性,减少系统自身产生的干扰因 素。接地的目的有两个:安全性和抑制干扰。因此接地分为保护接地、屏蔽接地和信号接地。保护接地以安全为目的,传感器测量装置的机壳、底盘等都要接地。要求接地电阻在10Ω以下。屏蔽接地是干扰电压对地形成低阻通路,以防干扰测量装置。接地电阻应小于0.02Ω。 信号接地是电子装置输入与输出的零信号电位的公共线,它本身可能与大地是绝缘的。信号地线又分为模拟信号地线和数字信号地线,模拟信号一般较弱,故对地线要求较高:数字信号一般较强,故对地线要求可低一些。不同的传感器检测条件对接地的方式也有不同的要求,必须选择合适的接地方法,常用接地方法有一点接地和多点按地。下面给出这两种不同的接地处理措施。 6、一点接地 在低频电路中一般建议采用一点接地,它有放射式接地线和母线式接地线路。放射式接地是电路中各功能电路直接用导线与零电位基准点连接:母线式接地是采用具有一定截面积的优质导体作为接地母线,直接接到零电位点,电路中的各功能块的地可就近接在该母线上。这时若采用多点接地,在电路中会形成多个接地回路,当低频信号或脉冲磁场经过这些回路时,会引起电磁感应噪声,由于每个接地回路的特性不同,在不同的回路闭合点产生电位差,形成干扰。为避免这种情况,推荐采用一点接地的方法。 传感器与测量装置构成一个完整的检测系统,但两者之问可能相距较远。由于工业现场大地电流十分 复杂,所以这两部分外壳的接大地点之间的电位一般是不相同的,若将传感器与测量装置的零电位在两处分别接地,即两点接地,则会有较大的电流流过内阻很低的 信号传输线产生压降,造成串模干扰。因此这种情况下也应该采用一点接地方法。 7、多点接地 高频电路一般建议采用多点接地。高频时,即使一小段地线也将有较大的阻抗压降,加上分布电容的作用,不可能实现一点接地,因此可采用平面式接地方式,即多点接地方式,利用一个良好的导电平面体(如采用多层线路板中的一层)接至零电位基准点上,各高频电路的地就近接至该导电平面体上。由于导电平面体的高频阻抗很小,基本保证了每一处电位的一致,同时加设旁路电容等减少压降。因此,这种情况耍采用多点接地方式。 8、滤波技术 滤波器是抑制交流串模干扰的有效手段之一。传感器检测电路中常见的滤波电路有Rc滤波器、交流电源滤波器和真流电源滤波器。 下面介绍这几种滤波电路的应用。 RC滤波器 当信号源为热电偶、应变片等信号变化缓慢的传感器时,利用小体积、低成本的无源Rc滤波器将会对串模干扰有较好的抑制效果。但应该一提的是,Rc滤波器是以牺牲系统响应速度为代价来减少串模干扰的。 交流电源滤波器 电源网络吸收了各种高、低频噪声,对此常用Lc滤波器来抑制混入电源的噪声。 直流电源滤波器 直流电源往往为几个电路所共用,为了避免通过电源内阻造成几个电路问相互干扰,应该在每个电路的直流电源上加上Rc或Lc退耦滤波器,用来滤除低频噪声。 光电耦合技术 光电耦合器是一种电——光——电的耦合器件,它由发光二极管和光电三极管封装组成,其输入与输出在电气上是绝缘的,因此这种器件除了用于做光电控制以外, 现在被越来越多的用于提高系统的抗共模干扰能力。当有驱动电流流过光藕合器中的发光二极管,光电三极管受光饱和。其发射极输出高电平,从而达到信号传输的 目的。这样即使输入回路有干扰。只要它在门限之内,就不会对输出造成影响。 脉冲电路中的嗓声抑制 若在脉冲电路中存在干扰噪声。可以将输入脉冲微分后再积分,然后设置一定幅度的门限电压,使得小于该门限电压的信号被滤除。对于模拟信号可以先用A/D转换.再用这种方法滤除噪声。我们在使用这些抗干扰技术时要根据实际情况迸行选择。切不可盲目使用,否则不但达不到抗干扰的目的,可能还会有其他不良影响。以上就是常用的抗干扰技术,希望能给大家帮助。

    时间:2020-04-02 关键词: 抗干扰技术 滤波器 屏蔽

  • 电子元器件检测方法

    电子元器件检测方法

    什么是电子元器件?如何检测?首先,电子设备中使用着大量各种类型的电子元器件,设备发生故障大多是由于电子元器件失效或损坏引起的。因此怎么正确检测电子元器件就显得尤其重要,这也是电子维修人员必须掌握的技能。下面是部分常见电子元器件检测经验和技巧,供大家参考。 1 测整流电桥各脚的极性 万用表置R×1k挡,黑表笔接桥堆的任意引脚,红表笔先后测其余三只脚,如果读数均为无穷大,则黑表笔所接为桥堆的输出正极,如果读数为4~10kΩ,则黑表笔所接引脚为桥堆的输出负极,其余的两引脚为桥堆的交流输入端。 2 判断晶振的好坏 先用万用表(R×10k挡)测晶振两端的电阻值,若为无穷大,说明晶振无短路或漏电;再将试电笔插入市电插孔内,用手指捏住晶振的任一引脚,将另一引脚碰触试电笔顶端的金属部分,若试电笔氖泡发红,说明晶振是好的;若氖泡不亮,则说明晶振损坏。 3 单向晶闸管检测 可用万用表的R×1k或R×100挡测量任意两极之问的正、反向电阻,如果找到一对极的电阻为低阻值(100Ω~lkΩ),则此时黑表笔所接的为控制极,红表笔所接为阴极,另一个极为阳极。晶闸管共有3个PN结,我们可以通过测量PN结正、反向电阻的大小来判别它的好坏。测量控制极(G)与阴极[C)之间的电阻时,如果正、反向电阻均为零或无穷大,表明控制极短路或断路;测量控制极(G)与阳极(A)之间的电阻时,正、反向电阻读数均应很大;{测量阳极(A)与阴极(C)之间的电阻时,正、反向电阻都应很大。 4 双向晶闸管的极性识别 双向晶闸管有主电极1、主电极2和控制极,如果用万用表R×1k挡测量两个主电极之间的电阻,读数应近似无穷大,而控制极与任一个主电极之间的正、反向电阻读数只有几十欧。根据这一特性,我们很容易通过测量电极之间电阻大小,识别出双向晶闸管的控制极。而当黑表笔接主电极1。红表笔接控制极时所测得的正向电阻总是要比反向电阻小一些,据此我们也很容易通过测量电阻大小来识别主电极1和主电极2。 5 检查发光数码管的好坏 先将万用表置R×10k或R×l00k挡,然后将红表笔与数码管(以共阴数码管为例)的“地”引出端相连,黑表笔依次接数码管其他引出端,七段均应分别发光,否则说明数码管损坏。 6 判别结型场效应管的电极 将万用表置于R×1k挡,用黑表笔接触假定为栅极G的管脚,然后用红表笔分别接触另外两个管脚,若阻值均比较小(5~10Ω),再将红、黑表笔交换测量一次。如阻值均大(∞),说明都是反向电阻(PN结反向),属N沟道管,且黑表笔接触的管脚为栅极G,并说明原先假定是正确的。若再次测量的阻值均很小,说明是正向电阻,属于P沟道场效应管,黑表笔所接的也是栅极G。若不出现上述情况,可以调换红、黑表笔,按上述方法进行测试,直至判断出栅极为止。一般结型场效应管的源极与漏极在制造时是对称的,所以,当栅极G确定以后,对于源极S、漏极D不一定要判别,因为这两个极可以互换使用。源极与漏极之间的电阻为几千欧。 7 三极管电极的判别 对于一只型号标示不清或无标志的三极管,要想分辨出它们的三个电极,也可用万用表测试。先将万用表量程开关拨在R×100或R×1k电阻挡上。红表笔任意接触三极管的一个电极,黑表笔依次接触另外两个电极,分别测量它们之间的电阻值,若测出均为几百欧低电阻时,则红表笔接触的电极为基极b,此管为PNP管。若测出均为几十至上百千欧的高电阻时,则红表笔接触的电极也为基极b,此管为NPN管。 在判别出管型和基极b的基础上,利用三极管正向电流放大系数比反向电流放大系数大的原理确定集电极。任意假定一个电极为c极,另一个电极为e极。将万用表量程开关拨在R×1k电阻挡上。对于:PNP管,令红表笔接c极,黑表笔接e极,再用手同时捏一下管子的b、c极,但不能使b、c两极直接相碰,测出某一阻值。然后两表笔对调进行第二次测量,将两次测的电阻相比较,对于:PNP型管,阻值小的一次,红表笔所接的电极为集电极。对于NPN型管阻值小的一次,黑表笔所接的电极为集电极。 8 电位器的好坏判别 先测电位器的标称阻值。用万用表的欧姆挡测“1”、“3”两端(设“2”端为活动触点),其读数应为电位器的标称值,如万用表的指针不动、阻值不动或阻值相差很多,则表明该电位器已损坏。再检查电位器的活动臂与电阻片的接触是否良好。用万用表的欧姆挡测“1”、“2”或“2”、“3”两端,将电位器的转轴按逆时针方向旋至接近“关”的位置,此时电阻应越小越好,再徐徐顺时钟旋转轴柄,电阻应逐渐增大,旋至极端位置时,阻值应接近电位器的标称值。如在电位器的轴柄转动过程中万用表指针有跳动瑚象,描踢活动触点接触不良。 9 测量大容量电容的漏电电阻 用500型万用表置于R×10或R×100挡,待指针指向最大值时,再立即改用R×1k挡测量,指针会在较短时间内稳定,从而读出漏电电阻阻值。 10 判别红外接收头引脚 万用表置R×1k挡,先假设接收头的某脚为接地端,将其与黑表笔相接,用红表笔分别测量另两脚电阻,对比两次所测阻值(一般在4~7kQ范围),电阻较小的一次其红表笔所接为 5V电源引脚,另一阻值较大的则为信号引脚。反之,若用红表笔接已知地脚,黑表笔分别测已知电源脚及信号脚,则阻值都在15kΩ以上,阻值小的引脚为 5V端,阻值偏大的引脚为信号端。如果测量结果符合上述阻值则可判断该接收头完好。 11 判断无符号电解电容极性 先将电容短路放电,再将两引线做好A、B标记,万用表置R×100或R×1k挡,黑表笔接A引线,红表笔接B引线,待指针静止不动后读数,测完后短路放电;再将黑表笔接B引线,红表笔接A引线,比较两次读数,阻值较大的一次黑表笔所接为正极,红表笔所接为负极。 12 测发光二极管 取一个容量大于100“F的电解电容器(容量越大,现象越明显),先用万用表R×100挡对其充电,黑表笔接电容正极,红表笔接负极,充电完毕后,黑表笔改接电容负极,将被测发光二极管接于红表笔和电容正极之间。如果发光二极管亮后逐渐熄灭,表明它是好的。此时红表笔接的是发光二极管的负极,电容正极接的是发光二极管的正极。如果发光二极管不亮,将其两端对调重新接上测试,还不亮,表明发光二极管已损坏。 13 光电耦合器检测 万用表选用电阻R×100挡,不得选R×10k挡,以防电池电压过高击穿发光二极管。红、黑表笔接输入端,测正、反向电阻,正常时正向电阻为数十欧姆,反向电阻几千欧至几十千欧。若正、反向电阻相近,表明发光二极管已损坏。万用表选电阻R×1挡。红、黑表笔接输出端,测正、反向电阻,正常时均接近于∞,否则受光管损坏。万用表选电阻R×10挡,红、黑表笔分别接输入、输出端测发光管与受光管之间的绝缘电阻(有条件应用兆欧表测其绝缘电阻,此时兆欧表输出额定电压应略低于被测光电耦合器所允许的耐压值),发光管与受光管问绝缘电阻正常应为∞。 14 光敏电阻的检测 将万用表拨到R×1kΩ挡,把光敏电阻的受光面与入射光线保持垂直,于是在万用表上直接测得的电阻就是亮阻。再把光敏电阻置于完全黑暗的场所,这时万用表所测出的电阻就是暗阻。如果亮阻为几千欧至几十干欧,暗阻为几至几十兆欧,说明光敏电阻是好的。 15 激光二极管损坏判别 拆下激光二极管,测量其阻值,正常情况下反向阻值应为无穷大,正向阻值在20kΩ~40kΩ。如果所测的正向阻值已超过50kΩ,说明激光二极管性能已下降;如果其正向阻值已超过90kΩ,说明该管已损坏,不能再使用了。以上就是电子元器件的检测方法,希望能给大家帮助。

    时间:2020-04-02 关键词: 电子元器件 晶闸管 晶振

发布文章