• 磷酸铁锂电池工作原理

    磷酸铁锂电池工作原理

    什么是磷酸铁锂电池?它的工作原理是什么?磷酸铁锂电池其实是一种锂离子电池的正极材料,所以人们才会以它的正极材料为其命名为磷酸铁锂电池。关于磷酸铁锂电池的详解磷酸铁锂电池的全名是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池。 工作原理 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。 意义 金属交易市场,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)存储量较多。正极材料的价格也与这些金属的价格行情一致。因此,采用LiFePO4正极材料做成的锂离子电池应是挺便宜的。它的另一个特点是对环境环保无污染。 作为充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 结构与工作原理 LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li可以通过而电子e-不能通过,右边是由碳(石墨)组成的电池负极,由铜箔与电池的负极连接。电池的上下端之间是电池的电解质,电池由金属外壳密闭封装。LiFePO4电池在充电时,正极中的锂离子Li通过聚合物隔膜向负极迁移;在放电过程中,负极中的锂离子Li通过隔膜向正极迁移。锂离子电池就是因锂离子在充放电时来回迁移而命名的。 主要性能 LiFePO4电池的标称电压是3.2V、终止充电电压是3.6V、终止放电压是2.0V。由于各个生产厂家采用的正、负极材料、电解质材料的质量及工艺不同,其性能上会有些差异。例如同一种型号(同一种封装的标准电池),其电池的容量有较大差别(10%~20%)。 这里要说明的是,不同工厂生产的磷酸铁锂动力电池在各项性能参数上会有一些差别;另外,有一些电池性能未列入,如电池内阻、自放电率、充放电温度等。磷酸铁锂动力电池的容量有较大差别,可以分成三类:小型的零点几到几毫安时、中型的几十毫安时、大型的几百毫安时。不同类型电池的同类参数也有一些差异。 过放电到零电压试验: 采用STL18650(1100mAh)的磷酸铁锂动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。 试验的结果是,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。这试验说明该磷酸铁锂电池即使出现过放电(甚至到0V),并存放一定时间,电池也不泄漏、损坏。这是其他种类锂离子电池不具有的特性。 优势 1、安全性能的改善 磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充时也不会像钴酸锂一样结构崩塌发热或是形成强氧化性物质,因此拥有良好的安全性。有报告指出,实际操作中针刺或短路实验中发现有小部分样品出现燃烧现象,但未出现一例爆炸事件,而过充实验中使用大大超出自身放电电压数倍的高电压充电,发现依然有爆炸现象。虽然如此,其过充安全性较之普通液态电解液钴酸锂电池,已大有改善。 2、寿命的改善 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 长寿命铅酸电池的循环寿命在300次左右,最高也就500次,而磷酸铁锂动力电池,循环寿命达到2000次以上,标准充电(5小时率)使用,可达到2000次。同质量的铅酸电池是“新半年、旧半年、维护维护又半年”,最多也就1~1.5年时间,而磷酸铁锂电池在同样条件下使用,理论寿命将达到7~8年。综合考虑,性能价格比理论上为铅酸电池的4倍以上。大电流放电可大电流2C快速充放电,在专用充电器下,1.5C充电40分钟内即可使电池充满,起动电流可达2C,而铅酸电池无此性能。 3、高温性能好 磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20C--75C),有耐高温特性磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。 4、大容量 ∩充电池在经常处于充满不放完的条件下工作,容量会迅速低于额定容量值,这种现象叫做记忆效应。像镍氢、镍镉电池存在记忆性,而磷酸铁锂电池无此现象,电池无论处于什么状态,可随充随用,无须先放完再充电。 5、重量轻 同等规格容量的磷酸铁锂电池的体积是铅酸电池体积的2/3,重量是铅酸电池的1/3。 6、环保 磷酸铁锂电池一般被认为是不含任何重金属与稀有金属(镍氢电池需稀有金属),无毒(SGS认证通过),无污染,符合欧洲RoHS规定,为绝对的绿色环保电池证。所以锂电池之所以被业界看好,主要是环保考量,因此该电池又列入了“十五”期间的“863”国家高科技发展计划,成为国家重点支持和鼓励发展的项目。随着中国加入WTO,中国电动自行车的出口量将迅速增大,而进入欧美的电动自行车已要求配备无污染电池。 但有专家表示,铅酸电池造成的环境污染,主要发生在企业不规范的生产过程和回收处理环节。同理,锂电池属于新能源行业不错,但它也不能避免重金属污染的问题。金属材料加工中有铅、砷、镉、汞、铬等都有可能会释放到灰尘和水中。电池本身就是一种化学物质,所以有可能会产生两种污染:一是生产工程中的工艺排泄物污染;二是报废以后的电池污染。 磷酸铁锂电池也有其缺点:例如低温性能差,正极材料振实密度小,等容量的磷酸铁锂电池的体积要大于钴酸锂等锂离子电池,因此在微型电池方面不具有优势。而用于动力电池时,磷酸铁锂电池和其他电池一样,需要面对电池一致性问题。 缺点 一种材料是否具有应用发展潜力,除了关注其优点外,更为关键的是该材料是否具有根本性的缺陷。 国内现在普遍选择磷酸铁锂作为动力型锂离子电池的正极材料,从政府、科研机构、企业甚至是证券公司等市场分析员都看好这一材料,将其作为动力型锂离子电池的发展方向。分析其原因,主要有下列两点:首先是受到美国研发方向的影响,美国Valence与A123公司最早采用磷酸铁锂做锂离子电池的正极材料。其次是国内一直没有制备出可供动力型锂离子电池使用的具有良好高温循环与储存性能的锰酸锂材料。但磷酸铁锂也存在不容忽视的根本性缺陷,归结起来主要有以下几点: 1、在磷酸铁锂制备时的烧结过程中,氧化铁在高温还原性气氛下存在被还原成单质铁的可能性。单质铁会引起电池的微短路,是电池中最忌讳的物质。这也是日本一直不将该材料作为动力型锂离子电池正极材料的主要原因。 2、磷酸铁锂存在一些性能上的缺陷,如振实密度与压实密度很低,导致锂离子电池的能量密度较低。低温性能较差,即使将其纳米化和碳包覆也没有解决这一问题。美国阿贡国家实验室储能系统中心主任DonHillebrand博士谈到磷酸锂铁电池低温性能的时候,他用terrible来形容,他们对磷酸铁锂型锂离子电池测试结果表明表明磷酸铁锂电池在低温下(0℃以下)无法使电动汽车行驶。尽管也有厂家宣称磷酸锂铁电池在低温下容量保持率还不错,但是那是在放电电流较小和放电截止电压很低的情况下。在这种状况下,设备根本就无法启动工作。 3、材料的制备成本与电池的制造成本较高,电池成品率低,一致性差。磷酸铁锂的纳米化和碳包覆尽管提高了材料的电化学性能,但是也带来了其它问题,如能量密度的降低、合成成本的提高、电极加工性能不良以及对环境要求苛刻等问题。尽管磷酸铁锂中的化学元素Li、Fe与P很丰富,成本也较低,但是制备出的磷酸铁锂产品成本并不低,即使去掉前期的研发成本,该材料的工艺成本加上较高的制备电池的成本,会使得最终单位储能电量的成本较高。 4、产品一致性差。目前国内还没有一家磷酸铁锂材料厂能够解决这一问题。从材料制备角度来说,磷酸铁锂的合成反应是一个复杂的多相反应,有固相磷酸盐、铁的氧化物以及锂盐,外加碳的前驱体以及还原性气相。在这一复杂的反应过程中,很难保证反应的一致性。 5、知识产权问题。目前磷酸铁锂的基础专利被美国德州大学所有,而碳包覆专利被加拿大人所申请。这两个基础性专利是无法绕过去的,如果成本中计算上专利使用费的话,那产品成本将会进一步提高。 此外,从研发和生产锂离子电池的经验来看,日本是锂离子电池最早商业化的国家,并且一直占据着高端锂离子电池市场。而美国尽管在一些基础研究上领先,但是到目前为止还没有一家大型锂离子电池生产企业。因此,日本选择改性锰酸锂作为动力型锂离子电池正极材料更有其道理。即使是在美国,利用磷酸铁锂和锰酸锂作为动力型锂离子电池正极材料的厂家也是各占一半,联邦政府也是同时支持这两种体系的研发。 鉴于磷酸铁锂存在的上述问题,很难作为动力型锂离子电池的正极材料在新能源汽车等领域获得广泛应用。如果能够解决锰酸锂存在的高温循环与储存性能差的难题,凭借其低成本与高倍率性能的优势,在动力型锂离子电池中的应用将有巨大的潜力。以上就是磷酸铁锂电池工作原理解析,希望能给大家帮助。

    时间:2020-04-04 关键词: 电池 锂离子 磷酸铁锂

  • 什么是超级电容器?

    什么是超级电容器?

    什么是超级电容器?它的工作原理是什么?指介于传统电容器和充电电池之间的一种新型储能装置,既具有电容器快速充放电的特性,同时又具有电池的储能特性。 2.原理 超级电容器是通过电极与电解质之间形成的界面双层来存储能量的新型元器件。当电极与电解液接触时,由于库仑力、分子间力及原子间力的作用,使固液界面出现稳定和符号相反的双层电荷,称其为界面双层。把双电层超级电容看成是悬在电解质中的2个非活性多孔板,电压加载到2个板上。加在正极板上的电势吸引电解质中的负离子,负极板吸引正离子,从而在两电极的表面形成了一个双电层电容器。双电层电容器根据电极材料的不同,可以分为碳电极双层超级电容器、金属氧化物电极超级电容器和有机聚合物电极超级电容器。 3.特点 与蓄电池和传统物理电容器相比,超级电容器的特点主要体现在: (1)功率密度高。可达102~104 W/kg,远高于蓄电池的功率密度水平。 (2)循环寿命长。在几秒钟的高速深度充放电循环50万次至100万次后,超级电容器的特性变化很小,容量和内阻仅降低10%~20%。 (3)工作温限宽。由于在低温状态下超级电容器中离子的吸附和脱附速度变化不大,因此其容量变化远小于蓄电池。商业化超级电容器的工作温度范围可达-40℃~+80℃。 (4)免维护。超级电容器充放电效率高,对过充电和过放电有一定的承受能力,可稳定地反复充放电,在理论上是不需要进行维护的。 (5)绿色环保。超级电容器在生产过程中不使用重金属和其他有害的化学物质,且自身寿命较长,因而是一种新型的绿色环保电源。 4.分类 对于超级电容器来说,依据不同的内容可有不同的分类方法。 首先,根据不同的储能机理,可将超级电容器分为双电层电容器和法拉第准电容器两大类。其中,双电层电容器主要是通过纯静电电荷在电极表面进行吸附来产生存储能量。法拉第准电容器主要是通过法拉第准电容活性电极材料(如过渡金属氧化物和高分子聚合物)表面及表面附近发生可逆的氧化还原反应产生法拉第准电容,从而实现对能量的存储与转换。 其次,根据电解液种类可分为水系超级电容器和有机系超级电容器两大类。此外,根据活性材料的类型是否相同,可分为对称超级电容器和非对称超级电容器。其次,根据电解液的状态形式,又可将超级电容器分为固体电解质超级电容器和液体电解质超级电容器两大类。 5.主要参数 1)寿命:超级电容器的内阻增加,则容量降低j在规定的参数范围内,它的有效使用时间是可以延长的,一般跟它的特点第4条所规定的有关。影响寿命的是活性干涸、内阻加大,存储电能能力下降至63.2%称为寿命终结。 2)电压:超级电容器有一个推荐电压和一个推荐工作电压 如果使用电压高于推荐电压,将缩短电容器的寿命,但是电容器能连续长期工作在过高压状态下,电容器内部的活性炭将分解形成气体,有利存储电能,但不能超过推荐电压的1.3倍,否则将会因电压超高而损坏超级电容器。 3)温度:超级电容器的正常操作温度是-40~70℃。温度与电压是影响超级电容器寿命的重要因素。温度每升高5℃,电容器的寿命将下降10%。在低温下,提高电容器的工作电压,电容器的内阻不会上升,可提高电容器的使用效率。 4)放电:在脉冲充电技术里,电容内阻是重要因素;在小电流放电中,容量又是重要因素。 5)充电:电容充电有多种方式,如恒流充电、恒压充电、脉冲充电等。在充电过程中,在电容回路串接一只电阻,将降低充电电流,提高电池的使用寿命。以上就是超级电容器的原理解析,希望能给大家帮助。

    时间:2020-04-04 关键词: 电池 蓄电池 电容器

  • 钛酸锂电池技术发展现状

    钛酸锂电池技术发展现状

    什么是钛酸锂电池技术?它有什么工作原理?小编给大家介绍下干货,钛酸锂电池技术:它还可以用作正极,与金属锂或锂合金负极组成1.5V的锂二次电池。它是一种用作锂离子电池负极材料-钛酸锂,可与锰酸锂、三元材料或磷酸铁锂等正极材料组成2.4V或1.9V的锂离子二次电池。 由于钛酸锂的高安全性、高稳定性、长寿命和绿色环保的特点。钛酸锂电池技术在储能领域,具有充电快、寿命长、耐低温等优点,特别适用于固定里程或固定线路的公交、码头拖车等车型。钛酸锂电池仍不算是电池技术的主流,目前国内汽车厂商应用比较多的还是三元锂电池、磷酸铁锂电池。 钛酸锂电池的组成 负极:钛酸锂材料 隔膜:以碳作负极的锂电池隔膜 电解液:以碳作负极的锂电池电解液 电池壳:以碳作负极的锂电池壳 钛酸锂电池技术未来发展前景怎么样? 钛酸锂电池虽然倍率性能较差,能量密度不够高,但其具有快充的优势。随着其价格日趋合理,充电设施配套日益完善,未来钛酸锂电池有望在动力电池领域占据重要的一席之地。 据了解,从实际使用价值来看,钛酸锂电池有望凭借超长的循环寿命,给客户带来更低的使用成本优势。随着价格日趋合理,钛酸锂即将上演逆袭。钛酸锂电池未来市场空间将十分有限。汽车产业基本没有空间,未来汽车产业的空间将比现在还小。储能领域可以尝试,但也不会成为主流,再加上价格高昂,与未来储能有望用动力电池二次利用的高性价比相比,钛酸锂在储能领域前景也堪忧。 钛酸锂电池技术的优缺点 钛酸锂电池具有体积小、重量轻、能量密度高、密封性能好、无泄露、无记忆效应、自放电率低、充放电迅速、循环寿命超长、工作环境温度范围宽、安全稳定绿色环保等特点,所以在通信电源领域具有非常广泛的应用前景。钛酸锂电池作为负极材料时电位平台高达1.55V,比传统石墨负极材料高出1V还多,虽然损失了一些能量密度,但也意味着电池更加安全。 由于钛酸锂电池在高温、低温环境中均可以达到安全使用,也体现出其耐宽温(尤其耐低温)的重要优势。目前,银隆钛酸锂电池的安全工作温度区域在-50度到65度之间。循环寿命长。与传统锂离子电池普遍采用的石墨材料相比,钛酸锂电池材料在充放电嵌脱锂过程中,骨架结构几乎不发生收缩或膨胀,被称为“零应变”材料,避免了一般电极材料脱/嵌锂离子时晶胞体积应变而造成的电极结构损坏的问题。 钛酸锂电池的一个优势是快速充放电能力强,充电倍率高。目前银隆钛酸锂电池的充电倍率有10C、甚至20C,而普通石墨负极材料的电池充电倍率仅有2C-4C。钛酸锂电池在循环使用中会发生持续产气,导致电池包鼓胀,高温时尤其严重,影响正负极的接触,增加电池阻抗,影响电池性能的发挥。这也是限制负极材料钛酸锂广泛应用到电池中的主要障碍之一。 钛酸锂电池材料颗粒纳米化的过程往往比较困难,需要较高的成本,目前难以实现大规模的工业生产。钛酸锂电池相对其他类型的锂离子动力电池能量密度会低一些。 钛酸锂电池技术在国内外的发展状况 近10多年来,国内外对钛酸锂电池技术的研究可谓是风起云涌。其产业链可分为钛酸锂材料制备、钛酸锂电池生产与钛酸锂电池系统的集成及其在电动车及储能市场的应用。 国际上对钛酸锂材料研究及产业化方面的有美国奥钛纳米科技公司、日本石原产业株式会社、英国庄信万丰公司等。其中美国奥钛生产的钛酸锂材料无论在倍率、安全性、长寿命及高低温等方面性能优异。但是由于生产方法过于冗长精细导致生产成本偏高,使其在商业化推广上难度较大。 国际上能够批量生产钛酸锂电池的厂家并不多,主要以美国奥钛与日本东芝集团为代表。钛酸锂电池的应用市场主要有电动车、储能市场及工业应用。国内在钛酸锂电池生产方面已有多家,如湖州微宏、珠海银隆、深圳博磊达、天津市捷威动力工业有限公司、四川兴能、中信国安盟固利电源技术有限公司、湖南杉杉及安徽和深圳周边的多家规模较小的钛酸锂电池生产厂家。 以上是钛酸锂电池技术未来发展前景的介绍,钛酸锂电池凭借高安全、快响应、长寿命、低成本等特性应用在发电、供电、用户侧。如今,一个架构初现的钛酸锂储能生态圈已然清晰可见。相信未来的科学更加发达的时候,电池技术会越来越好。

    时间:2020-04-04 关键词: 锂离子电池 钛酸锂电池 钛酸锂

  • 电瓶车充电器工作解析

    电瓶车充电器工作解析

    电瓶车大家都知道,那么知道它的工作原理吗?220V交流电经LF1双向滤波.VD1-VD4整流为脉动直流电压,再经C3滤波后形成约300V的直流电压,300V直流电压经过启动电阻R4为脉宽调制集成电路IC1的7脚提供启动电压,IC1的7脚得到启动电压后,(7脚电压高于14V时,集成电路开始工作),6脚输出PWM脉冲,驱动电源开关管(场效应管)VT7工作在开关状态,电流通过VT1的S极-D极-R7-接地端。 (一)简介: 电瓶车我们又称为电动车,它是由蓄电池(电瓶)提供电能,由电动机(直流、交流,串励、他励)驱动的纯电动机动车辆。近年来,在我国得到了非常广泛的普及。目前国内的电瓶车主要用于观光载客、治安巡逻、搬运货物之用,电动观光车的主要用途是在公园、景区、休闲度假村、大学、医院、高尔夫球场、房地产公司等场所用作载客,电动巡逻车主要用途是在车站广场、人流密集场所进行治安巡逻,电动搬运车的主要用途是在工厂、港口码头、物流库房等。电动环卫车主要用途是用于清理场地、清洗路面、转运垃圾等使用。电瓶车使用寿命一般为8至12年,其蓄电池使用寿命一般为1-4年(视使用维护情况)。 (二)发展简史 电瓶车发展历史:源于19世纪80年代,用作私人轿车、载重卡车和城市公共交电动观光车通车。电瓶车的低速度、充电里程有限并不是缺点,而其无噪音、维修费低等优点使其得以普及。 1920年之前,电瓶车一直在和汽油车竞争,后来电瓶车开始减少,因为电动启动器使汽油动力车变得更具吸引力,加上大量生产使汽油车成本降低。在欧洲,电动车一直被用作短程货运车。从70年代开始,各国又重新对电动车产生兴趣,尤其是受到不应依赖外国石油和环境问题影响,导致一再改进电瓶车速度和行驶距离。随着汽车能源与污染问题不断受到人们关注,电瓶车技术的不断改进、用途的不断扩展,未来电瓶车发展前景光明。 1、恒流电路是通过采样电阻R1(0.1欧)、358A及其周边电路构成。按照图纸提供的数据,该充电器为2.4A的电流,当充电电流下降到0.55A时,转灯。 2、12V稳压管稳定的12V电压,进过R17、R33//R34分压后,在358A的Pin2得到0.24V的电压。当充电器开始给电池充电时,充电电流开始产生并迅速增大,并在采样电阻R1上形成压降。当电流上升到2.4A的时候,在R1上压降达到0.24V,258A的Pin3电压也为0.24V,达到358A的临界状态。流继续增大超过2.4A,358A的Pin3电压也高过0.24V,此时358A的Pin1输出高电平信号,该信号通过光耦4N35使得3842停止震荡工作。当3842停止工作时,充电器输出电压开始下降,充电电流开始下降,R1电阻的采样电压开始下降,358A的Pin3电压开始下降。当358A的Pin3电压下降到小于0.24V的电压时,358APin1输出低电平,3842开始震荡工作,充电器输出电压开始升高,充电电流开始增大……如此在2.4A附近不停变化 3、如果想改变充电器的充电电流数值,可以调整R1、R17、R33//R34电阻的数值。不过由于R1电阻过小,很难调整。所以可以通过调整R17、R33//R34来实现。增大R17电阻,可以降低充电电流;减小R17,可提高充电电流。增大R33//R34电阻,可以提高充电电流;减小R33//R34,可降低充电电流。 4、计算方法,358A的Pin2电压240mV除以采样电阻R1的阻值0.1欧即为:2.4A 电动汽车充电机是一种专为电动汽车的车用电池充电的设备,是对电池充电时用到的有特定功能的电力转换装置。电动汽车充电机可以分为直流充电机和交流充电机。 直流充电机:指采用直流充电模式为电动汽车动力蓄电池总成进行充电的充电机。直流充电模式是以充电机输出的可控直流电源直接对动力蓄电池总成进行充电的模式。交流充电机:指采用交流充电模式为电动汽车动力蓄电池总成进行充电的充电机。交流充电模式是以三相或单相交流电源向电动汽车提供充电电源的模式。交流充电模式的特征是:充电机为车载系统。 充电机适应电池类型:充电机至少能为以下三种类型动力蓄电池中的一种充电:锂离子蓄电池、铅酸蓄电池、镍氢蓄电池。恒压恒流充电模式,自动完成整个充电过程。使整个充电过程更贴近电池原有特性,避免采用机车原充电方式所造成的蓄电池欠充、过充等问题,有效延长蓄电池使用寿命。机车蓄电池充电机工作时无需人工值守,超长时间充电,无过充危险。电路特点1.采用已非常成熟的Buck---BoostConverter电路拓扑和技术,使得电路可靠性提高。 2.由于充电机电路工作在开关状态,其转换效率高,整个工作期间效率都在90%以上,不影响机车直流发电机原有工作状态,对机车其它设备不构成影响。 3.采用独特的控制技术,使升降压过渡平稳。 4.电压模式、电流模式双环路控制,工作更稳定。 5.保护电路齐全,各单元电路逐级保护,使充电机工作更加可靠。 6.独特的电路布局和构架,使自身辐射小,不对机车其它设备构成干扰,同时抗干扰能力强,自身工作更稳定。以上就是电瓶车充电器的工作原理解析,希望能给大家帮助。

    时间:2020-04-04 关键词: 充电器 蓄电池 场效应管

  • 各类电池性能、限制因素及其应用场景解析

    各类电池性能、限制因素及其应用场景解析

    现在的社会的发展,促进了电池的不断发展,电池的突破受到众多赞扬,为了吸引媒体和消费者的关注,各类新型超级电池也层出不穷。然而,电池行业应该保持理性,下面这篇文章通过关注电池的可靠性、经济性、寿命和安全性,帮助大家了解电池的许多功能及其限制因素。 牵引车电池 轮椅、摩托车和高尔夫汽车大多使用铅酸电池。尽管铅酸很重,但它的工作原理相当好,而且只需适度的调整就可以转换到其他系统中去。虽然锂离子电池比铅酸电池更贵,但由于寿命更长,因此循环成本更低,相对于于铅和镍电池,它的另一个优势是低维护。锂离子电池可以在任何充电状态下使用而不会产生副作用,相比之下,镍镉电池(NiCd)和镍氢电池(NiMH)偶尔需要完全放电来防止其产生记忆,而铅酸电池则需要饱和电荷来防止硫酸盐。 除此之外,叉车也较多使用铅酸电池。对于叉车来说,长时间的充电对仓库是不利的,因为仓库一天24小时都在运转。也有些叉车装有燃料电池,在车辆行驶时为电池充电,尽管燃料电池有较差的电力输送,但是其需求也在缓慢上升。 其实理论上看说,轮式机械车辆越重,电池应用就越不合适,但这并不妨碍工程师们研究大型的电池系统以取代污染严重的内燃机。比如船舶港口的自动导引车辆(AGV)系统。AGV一天24小时都在运行,而且车辆不能被长时间的充电间隔所束缚,这是因为锂离子电池部分解决了这一问题,这种更轻、充电速度更快的电池取代了10吨重、300kWh的超大铅酸电池,但由于重量、充电时间和基础设施的限制,超大型电池仍然有一定的局限性。 用于潜艇的超级电池 对于大型牵引系统,目前还没有经济的电池解决方案,燃烧化石燃料也是无法完全避免的事情。现代锂离子电池可提供约150Wh/kg的能量,而化石燃料的净热值(NCV)超过12000wh /kg,从这点来看,电池的能量与化石燃料相比是微不足道的。但是应该承认,在节能减排的趋势下,电池的应用仍然会有所增长。 航空电池 飞机上电池的职责是在辅助动力装置(APU)关闭或飞行中的紧急情况下为导航和应急系统供电。这时电池为制动、地面操作和启动APU提供动力,如果发动机发生故障,电池必须能够提供30分钟到3小时的能量,每架飞机必须有足够的电池动力以便飞机安全着陆。在飞行过程中,电力由发电机提供,如果需要,可以断开机上电池。 大多数商用客机使用泛滥的是镍镉电池。而小型飞机通常会使用铅酸电池。虽然铅酸比镍镉更重,但对维护的要求也更少。现代喷气式战斗机用锂离子电池给喷气发动机装上了线轴,波音787梦幻客机也是如此。随着机载功能从液压转向电动,飞机需要更大的电池,高能量密度的锂离子电池比镍镉和铅酸电池更能满足这一需求。但是,意料之外的锂离子电池故障可能会导致严重后果,促使飞机制造商重拾镍镉电池。不可否认的是,所有电池都可能发生故障,事实上也有关于镍镉合金热失效的报道,且不少企业对于锂离子电池能量密度的过度追求和安全性的忽视才是电池故障最重要的原因。 喷气式战斗机 虽然飞机上有许多不同的电池,但它们唯一的目的是启动发动机,并在发动机关闭时提供备用电源。大型飞机将继续使用化石燃料飞行,因为电池还不能用于推进引擎。小型电池驱动式飞机正尝试将其用于飞行员训练和短跳飞行,但这些目前只属于实验性的。 卫星电池 现在,锂离子电池是卫星的首选电池,它重量轻,充电方便,经久耐用,循环良好,它的自放电低,几乎不需要维护。 “好奇号”火星探测器使用了特殊设计的锂镍氧化物电池(LiNiCo),形成了8S2P结构(8个电池串联,2个并联),只有部分充电和放电才能延长寿命。美国国家航空航天局预计锂离子电池可以使用7年,循环寿命为3.7万次,而国防部的锂离子电池使用寿命只有40%到60%。NASA实验室揭示,寿命的终止与阳极SEI层的生长、阴极材料的损耗、导电路径的损耗、金属锂的电镀和电解质氧化有关。据了解,大型的140Ah锂离子电池正在研发中,其使用寿命有望长达18年。 固定电池 对于储能电池的选择不应该只基于价格。总的来看,铅酸电池适合只需要偶尔排放的工作,液流电池和钠硫电池适用于需要集中放电的大型系统,而锂离子电池则适用于每天多次快速充电且放电时间短的中小型系统。从传统来看,固定电池是铅酸电池。因为对于电池的尺寸和重量要求不是十分严格,当很少放电时,铅酸电池有限的循环次数不会造成问题。暴露于高温和低温以及需要深度循环的应用程序通常使用镍镉电池。这种电池比铅酸电池更坚固,但成本大约是铅酸电池的四倍。镍镉电池是唯一一种可以在最小压力下快速充电的电池。 除此之外还有锂离子电池。锂离子电池具有许多优点,但在低温下性能不如镍镉和铅酸电池。另一种正在回归固定使用的电池是镍铁电池。发明家托马斯·爱迪生(Thomas Edison)曾为电动汽车推广镍铁电池,但由于成本高、自放电率高,镍铁最终输给了铅酸电池。现在对于这种电池的改进消除了其部分缺陷,它的超强耐用性重新引起了人们的兴趣。 储能系统(电网蓄电池) 风能和太阳能等可再生能源不能提供稳定的能源流,也不总是与用户需求相协调。因此大型储能系统(ESS)需要为其提供无缝服务。近几年来,储能系统(ESS)从煤炭和石油转向可再生资源的增长势头很强劲。据估计,到2021年,仅南非的ESS装机容量就将达到1500MWh。其中应用的电化学电池有液流电池、锂离子电池、铅酸电池等。 由于锂离子电池占地面积小、维护成本低、使用寿命长、负载均衡,因此很多储能电站正逐渐向锂离子电池发展。锂离子不会像铅酸一样因周期性地充满电而发生硫酸化,锂离子电池还具有重量轻、便于在偏远地区安装的优点。而它的缺点也是显而易见的,那就是价格高、低温性能差,价格问题目前已经大幅度下降了,未来几年还会继续下降,但低温性能差仍待解决,因为无法在冰点以下充电。 电池管理系统(BMS)将电池的电量保持在50%左右,以吸收大风带来的能量,满足高负载需求。现代的BMS可以在不到一秒的时间内从充电切换到放电。这有助于稳定输电线路上的电压,也称为频率调节。以上就是各类电池性能、限制因素及其应用场景,希望能给大家帮助。

    时间:2020-04-04 关键词: 系统 电池 应用

  • 各类电池性能、限制因素及其应用场景解析

    各类电池性能、限制因素及其应用场景解析

    现在的社会的发展,促进了电池的不断发展,电池的突破受到众多赞扬,为了吸引媒体和消费者的关注,各类新型超级电池也层出不穷。然而,电池行业应该保持理性,下面这篇文章通过关注电池的可靠性、经济性、寿命和安全性,帮助大家了解电池的许多功能及其限制因素。 牵引车电池 轮椅、摩托车和高尔夫汽车大多使用铅酸电池。尽管铅酸很重,但它的工作原理相当好,而且只需适度的调整就可以转换到其他系统中去。虽然锂离子电池比铅酸电池更贵,但由于寿命更长,因此循环成本更低,相对于于铅和镍电池,它的另一个优势是低维护。锂离子电池可以在任何充电状态下使用而不会产生副作用,相比之下,镍镉电池(NiCd)和镍氢电池(NiMH)偶尔需要完全放电来防止其产生记忆,而铅酸电池则需要饱和电荷来防止硫酸盐。 除此之外,叉车也较多使用铅酸电池。对于叉车来说,长时间的充电对仓库是不利的,因为仓库一天24小时都在运转。也有些叉车装有燃料电池,在车辆行驶时为电池充电,尽管燃料电池有较差的电力输送,但是其需求也在缓慢上升。 其实理论上看说,轮式机械车辆越重,电池应用就越不合适,但这并不妨碍工程师们研究大型的电池系统以取代污染严重的内燃机。比如船舶港口的自动导引车辆(AGV)系统。AGV一天24小时都在运行,而且车辆不能被长时间的充电间隔所束缚,这是因为锂离子电池部分解决了这一问题,这种更轻、充电速度更快的电池取代了10吨重、300kWh的超大铅酸电池,但由于重量、充电时间和基础设施的限制,超大型电池仍然有一定的局限性。 用于潜艇的超级电池 对于大型牵引系统,目前还没有经济的电池解决方案,燃烧化石燃料也是无法完全避免的事情。现代锂离子电池可提供约150Wh/kg的能量,而化石燃料的净热值(NCV)超过12000wh /kg,从这点来看,电池的能量与化石燃料相比是微不足道的。但是应该承认,在节能减排的趋势下,电池的应用仍然会有所增长。 航空电池 飞机上电池的职责是在辅助动力装置(APU)关闭或飞行中的紧急情况下为导航和应急系统供电。这时电池为制动、地面操作和启动APU提供动力,如果发动机发生故障,电池必须能够提供30分钟到3小时的能量,每架飞机必须有足够的电池动力以便飞机安全着陆。在飞行过程中,电力由发电机提供,如果需要,可以断开机上电池。 大多数商用客机使用泛滥的是镍镉电池。而小型飞机通常会使用铅酸电池。虽然铅酸比镍镉更重,但对维护的要求也更少。现代喷气式战斗机用锂离子电池给喷气发动机装上了线轴,波音787梦幻客机也是如此。随着机载功能从液压转向电动,飞机需要更大的电池,高能量密度的锂离子电池比镍镉和铅酸电池更能满足这一需求。但是,意料之外的锂离子电池故障可能会导致严重后果,促使飞机制造商重拾镍镉电池。不可否认的是,所有电池都可能发生故障,事实上也有关于镍镉合金热失效的报道,且不少企业对于锂离子电池能量密度的过度追求和安全性的忽视才是电池故障最重要的原因。 喷气式战斗机 虽然飞机上有许多不同的电池,但它们唯一的目的是启动发动机,并在发动机关闭时提供备用电源。大型飞机将继续使用化石燃料飞行,因为电池还不能用于推进引擎。小型电池驱动式飞机正尝试将其用于飞行员训练和短跳飞行,但这些目前只属于实验性的。 卫星电池 现在,锂离子电池是卫星的首选电池,它重量轻,充电方便,经久耐用,循环良好,它的自放电低,几乎不需要维护。 “好奇号”火星探测器使用了特殊设计的锂镍氧化物电池(LiNiCo),形成了8S2P结构(8个电池串联,2个并联),只有部分充电和放电才能延长寿命。美国国家航空航天局预计锂离子电池可以使用7年,循环寿命为3.7万次,而国防部的锂离子电池使用寿命只有40%到60%。NASA实验室揭示,寿命的终止与阳极SEI层的生长、阴极材料的损耗、导电路径的损耗、金属锂的电镀和电解质氧化有关。据了解,大型的140Ah锂离子电池正在研发中,其使用寿命有望长达18年。 固定电池 对于储能电池的选择不应该只基于价格。总的来看,铅酸电池适合只需要偶尔排放的工作,液流电池和钠硫电池适用于需要集中放电的大型系统,而锂离子电池则适用于每天多次快速充电且放电时间短的中小型系统。从传统来看,固定电池是铅酸电池。因为对于电池的尺寸和重量要求不是十分严格,当很少放电时,铅酸电池有限的循环次数不会造成问题。暴露于高温和低温以及需要深度循环的应用程序通常使用镍镉电池。这种电池比铅酸电池更坚固,但成本大约是铅酸电池的四倍。镍镉电池是唯一一种可以在最小压力下快速充电的电池。 除此之外还有锂离子电池。锂离子电池具有许多优点,但在低温下性能不如镍镉和铅酸电池。另一种正在回归固定使用的电池是镍铁电池。发明家托马斯·爱迪生(Thomas Edison)曾为电动汽车推广镍铁电池,但由于成本高、自放电率高,镍铁最终输给了铅酸电池。现在对于这种电池的改进消除了其部分缺陷,它的超强耐用性重新引起了人们的兴趣。 储能系统(电网蓄电池) 风能和太阳能等可再生能源不能提供稳定的能源流,也不总是与用户需求相协调。因此大型储能系统(ESS)需要为其提供无缝服务。近几年来,储能系统(ESS)从煤炭和石油转向可再生资源的增长势头很强劲。据估计,到2021年,仅南非的ESS装机容量就将达到1500MWh。其中应用的电化学电池有液流电池、锂离子电池、铅酸电池等。 由于锂离子电池占地面积小、维护成本低、使用寿命长、负载均衡,因此很多储能电站正逐渐向锂离子电池发展。锂离子不会像铅酸一样因周期性地充满电而发生硫酸化,锂离子电池还具有重量轻、便于在偏远地区安装的优点。而它的缺点也是显而易见的,那就是价格高、低温性能差,价格问题目前已经大幅度下降了,未来几年还会继续下降,但低温性能差仍待解决,因为无法在冰点以下充电。 电池管理系统(BMS)将电池的电量保持在50%左右,以吸收大风带来的能量,满足高负载需求。现代的BMS可以在不到一秒的时间内从充电切换到放电。这有助于稳定输电线路上的电压,也称为频率调节。以上就是各类电池性能、限制因素及其应用场景,希望能给大家帮助。

    时间:2020-04-04 关键词: 系统 电池 应用

  • 3.7v锂电池保护板概况

    3.7v锂电池保护板概况

    什么是锂电池保护板?它有什么注意事项?锂电池保护板主要由维护IC(过压维护)和MOS管(过流维护)构成,是用来保护锂电池电芯安全的器材。锂电池具有放电电流大、内阻低、寿数长、无回忆效应等被人们广泛运用,锂离子电池在运用中禁止过充电、过放电、短路,不然将会使电池起火、爆破等丧命缺陷,所以,在运用可充锂电池都会带有一块维护板来维护电芯的安全。 1、电压保护能力 过充电保护板:保护板有必要具有防止电芯电压超越预设值的才干过放电维护:保护板有必要具有防止电芯电压底于预设值的才干。 2、电流能力 (过流保护电流,短路保护) 保护板作为锂电芯的安全保护器材,既要在设备的正常作业电流规模内,能可靠工作,又要在当电池被意外短路或过流时能迅速动作,使电芯得到保护。 3、导通电阻 定义:当充电电流为500mA时,MOS管的导通阻抗。 由于通讯设备的工作频率较高,数据传输要求误码率低,其脉冲串的上升及下降沿陡,故对电池的电流输出能力和电压稳定度要求高,因而保护板的MOS管开关导通时电阻要小,单节电芯保护板通常在《70mΩ,如太大会导致通讯设备作业不正常,如手机在通话时突然断线、电话接不通、噪声等现象。 4、自耗电流 定义:IC作业电压为3。6V,空载状况下,流经保护IC的作业电流,一般极小。 保护板的自耗电流直接影响电池的待机时刻,通常规则保护板的自耗电流小于10微安。 5、机械功能、温度适应能力、抗静电能力 保护板有必要能通过国标规则的轰动,冲击实验;保护板在40到85度能安全工作,能经受±15KV的非触摸ESD静电测验。 锂电池充放电保护电路的特点及工作原理 锂电池的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。 [提示]PTC是英文PosiTIvetemperature coefficient的缩写,意即正温度系数电阻(温度越高,阻值越大)。该元件可起过流保护作用,即防止电池高温放电和不安全的大电流充放电。PTC器件采用高分子材料聚合物,通过严格的工艺制成,由聚合物树醋基体及分布在里面的导电粒子组成。在正常情况下,导电粒子在树醋中构成导电通路,器件表现为低阻抗;当电路中有过流现象发生时,流经PTC的大电流产生的热量使聚合物树醋基体体积膨胀,因而切断导电粒子间的连接,从而对电路起到过流保护作用。当故障解啥后,该元件可自动恢复到初始状态,保证电路正常工作。 一、锂电池的充放电要求 1.锂电池的充电 单节锂电池的最高充电终止电压为4.2V,不能过充,否则会因正极的锂离子丢失太多而使电池报废。对锂电池充电时,应采用专用的恒流、恒压充电器,先恒流充电至锂电池两端电压为4.2V后,转入恒压充电模式;当恒压充电电流降至100mA时,应停止充电。 充电电流(mA)可为0.1~1.5倍电池容量,例如:1350mAh的锂电池,其充电电流可控制在135mA~2025mA之间。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2. 锂电池的放电 由于锂电池的内部结构原因,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命会缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。单节锂电池的放电终止电压通常为3.0V,最低不能低于2.5V。电池放电时间长短与电池容量、放电电流大小有关。电池放电时间(小时)=电池容量/放电电流,且锂电池放电电流(mA)不应超过电池容量的3倍,例如:1000mAh的锂电池,则放电电流应严格控制在3A以内,否则会使电池损坏。 二、保护电路的组成 保护电路通常由控制IC、MOs开关管、熔断保险丝、电阻、电容等元件组成,如图2所示。正常的情况下,控制IC输出信号控制MOs开关管导通,使电芯与外电路导通,当电芯电压或回路电流超过规定值时,它立即控制MOS管关断,以保护电芯的安全。控制IC内置高精度电压检测电路和多级电流检测电路。其中,电压检测电路一是对充电电压进行检测,一旦达到其设定阈值(通常为3.9V~4.4V),立即进入过充电保护状态;二是对放电电压进行检测,一旦达到其设定阈值(通常为2.0V~3.0V ),立即进入过放电保护状态。 在该电路中,MOS开关管多采用薄型TSSOP -8或SOT23 -6封装形式,其外形如图3所示。这些MOS开关管有的内含一只N沟道场效应管,如FDMC7680,其①~③脚为S极,④脚为G极,⑤~⑧脚为D极,其内部结构如图4所示;有的内含两只N沟道场效应管,如FDW9926A、8205A等,其引脚功能与封装形式有关,如图5所示。 【提示】若控制IC与MOs开关管上有小圆形凹点,则该凹点所对管脚为①脚;若表面没有凹点,则元件型号标注左侧的第一个管脚为①脚,其余引脚按逆时针方向排列。另外,在换用MOS开关管时,需根据实际线路走向判断其内部电路,从而进行正确的代换。 另外,部分锂电池保护电路中还安装有NTC和ID信号形成元件。NTC是英文NegaTIvetemperature coefficient的缩写,意即负温度系数电阻。该元件在此电路中主要起过热保护作用,即当电池自身或其周边环境温度升高时,NTC元件阻值降低,使用电设备或充电设备及时作出反应,若温度超过一定值时,系统进入保护状态,停止充放电。ID是IdenTIficaTIon的缩写,即身份识别的意思,其信息识别的元件分为两种:一是存储器,常为兽线接口存储器,存储电池种类、生产日期等信息;二是识别电阻,这两者均可起到产品的可追溯和应用的限制。 三、保护电路工作原理分析 单节锂电池的正常输出电压约为3.7V,可直接作为手机、MP3/MP4及部分小屏幕的平板电脑的电源。对于需要较高电压的电器而言,如移动DVD/EVD或大屏幕平板电脑,这时可用多节锂电池串联得到所需电压,如一款需11.1V供电的平板电脑,则配用电池组件为三块串联的锂电池。单节锂电池与多节串联锂电池的保护电路有所不同,以上就是锂电池保护板的注意事项,希望能给大家帮助。

    时间:2020-04-04 关键词: 锂电池 串联 保护电路

  • 国内储能锂电池市场解析

    国内储能锂电池市场解析

    什么是储能锂电池?它的发展如何?2019年中国储能锂电池仍将继续快速增长,预计市场规模将达52亿,同比增长27%。在锂电池成本下行及电网侧示范工程拉动下,国内锂电储能正在迎来规模化商用的关键时间点。随着政策支持力度加大、电力制度商业化、市场机制建立、商业模式建立、锂电池装机量加速增长,至2021-2023年,锂电储能有望进入商业化加速期。 高小兵发表了“中国储能锂电池行情分析”的主题演讲,剖析了中国储能锂电行业发展现状、竞争格局及行业特点。从储能锂电池发展现状来看,在支持政策进入执行期、电网储能示范项目兴建、海外市场需求释放、动力电池企业转型加入等多重因素影响下,中国储能锂电池行业进入示范应用期。2018年也被认为是中国锂电储能元年。 CNESA数据显示,截至2018年底,中国已投运的电化学储能项目累积规模为1040MW,同比增长167%。与此同时2018年国内新增投运电化学储能项目装机规模为650MW,同比增长437.2%装机。其中,锂电池的装机比例为70%,占据主导地位。 受国家政策及引导影响,高工产业研究院(GGII)调研数据显示,2018年中国储能锂电池(不包含通信电源、数据中心、UPS等用锂电池)出货量同比增长113.3%,出货量为3.2GWh,规模为40.8亿元,同比增长46.8%,规模增长率不及出货量的主要原因来自于锂电池单价持续走低,2018年锂电池单价同比下降近30%。 需要注意的是,中国储能锂电产业当前仍处于孕育期,体量仍比较小,其主要用于用户侧削峰填谷、离网电站、微电网、轨道交通等;部分出口欧洲、澳大利亚等市场,主要用于家庭储能、电网储能等项目。 高小兵判断,2019年中国储能锂电池仍将继续快速增长,预计市场规模将达52亿,同比增长27%。增长驱动力包括:1、电网类示范项目继续释放,储能锂电池将在用户侧、电网侧及调峰调频环节得到应用;2、海外出口增加,2018年海外电网锂电池储能主要被LG、SDI占有,预计2019年中国厂商会加大出口。 从储能锂电行业竞争格局来看,目前国内储能锂电池企业超过50家,2018年国内储能锂电池出货量超100MWh企业11家,超1GWh的锂电储能企业只有BYD一家。高小兵指出,由于储能市场应用分场景、分区域,不同场景对于锂电池的性能要求不尽相同,且单个项目规模不大,因此储能锂电行业的竞争格局很难形成同动力电池行业般高集中度态势。 从国内储能锂电行业特点来看,目前,由政府引导的电网侧储能示范工程仍是国内锂电储能市场发展的第一驱动力。GGII调研数据显示,从新增项目分布上看,AGC调频项目数量最多,2018年统计为36个。规模装机量方面电网侧最大,主要集中在江苏、河南、湖南等省份大规模储能电站示范项目;用户侧方面众多工商业园区开始布局投运微电网项目。 技术路线方面,国内储能锂电技术以磷酸铁锂为主,占比超过85%,磷酸铁锂电池凭借安全性和循环性能优势在国内储能市场渗透率逐渐升高,三元电池的出货量主要来自阳光能源(采用三星电池)和科陆电子(采用LG电池)。商业模式方面,由于国内锂电储能市场量小,示范项目盈利能力还需时间验证,锂电储能的商业模式亟待探索突破。 高小兵认为,未来两种商业模式将极具潜力,一是储能系统将实现多种功能叠加,具体包括消峰填谷、动态扩容、需量管理、后备电源等功能,通过提升利用率提升盈利能力;二是“投资+运营+服务”模式,结合合同能源管理、EMC模式及租赁模式等多种方式,将投资回报周期尽量缩短。以上就是储能锂电池的相关解析,希望能给大家帮助。

    时间:2020-04-04 关键词: 锂电池 市场 储能

  • 24v电瓶充电电流概况

    24v电瓶充电电流概况

    电瓶车大家都见过,关于24v电瓶充电电流多大你到底知道多少?跟随小编看完下面全部搞定!一般是10小时左右。 充电时间取决于充电电流大小。 1、电瓶一般留20%电量以上,电瓶充电时的化学转换效率约为50%,充满电瓶需要增加150%*80%的电量。 2、电瓶的最佳充电电流为其容量的10%,但是,充电时间需要150%*80%/10%=12小时,再加1小时左右分段充电增加的时间。 3、为了符合人们的作息时间,设计中,一般采用容量13%的充电电流,这样充电时间至少为150%*80%/13%=9.2小时,再加1小时左右分段充电增加的时间。 4、快速充电,一般以电瓶容量的20%电流充电,充电时间为150%*80%/20%=6小时。使用更大电流充电,虽然充电时间缩短了,但是,对电瓶有伤害,慎重使用。 充电原理: 电瓶充电当前流行分段式充电,电瓶电量低时,采用恒流充方式,即在恒定电流下充电,此时,控制电路消耗的电能与充电相比占比较小,当电压达到一定值时,转为恒压充电方式,此时,与固定电压充电方式一致了,随着电瓶电压的上升,充电电流逐步减少,直到充电电压与电瓶电压相当,此过程中,控制电路的消耗占比是逐渐变大的。 所以,就有了四段式、五段式……,就是为了减少无谓的消耗。在恒压充电过程中,再进行恒流充(分段越多,效率越高,控制越复杂)。当充电电压与电瓶电压相当时,进入所谓“渭流”充,此过程对充实电瓶较为重要,但是,电效率也是最低的。 这取决于充电电流大小。 1、电瓶一般留20%电量以上,电瓶充电时的化学转换效率约为50%,充满电瓶需要增加150%*80%的电量。 2、电瓶的最佳充电电流为其容量的10%,但是,充电时间需要150%*80%/10%=12小时,再加1小时左右分段充电增加的时间。 3、为了符合人们的作息时间,设计中,一般采用容量13%的充电电流,这样充电时间至少为150%*80%/13%=9.2小时,再加1小时左右分段充电增加的时间。 4、快速充电,一般以电瓶容量的20%电流充电,充电时间为150%*80%/20%=6小时。使用更大电流充电,虽然充电时间缩短了,但是,对电瓶有伤害,慎重使用。以上就是24v电瓶充电电流解析,希望能给大家帮助。

    时间:2020-04-04 关键词: 蓄电池 电压 电流

  • 电动汽车如何提高电量?

    电动汽车如何提高电量?

    生活中处处可见电动汽车?那么应该如何提高电动车的电量呢?电动汽车不用摇号,没有限号时间,就是需要充电,有的人们不会接受这些问题,我们一起看看电动汽车充电速度是由哪些因素来控制呢?动力电池的充电速度由动力电池本身使用的电极材料、充电桩充电功率、动力电池温度三点决定。石墨烯电池具备超快速充电的能力,但石墨烯的量产依旧是难题。 电动汽车在国家政策的推动下开始加速发展,而对于刚刚接触纯电动汽车的消费者而言,最为关心的还是充电时间和续航里程的问题。但在目前的技术水平下,充电时间与续航里程往往难以兼得,因此在动力电池的发展过程中出现了两种不同的性能取向,一种更加专注于增加增加动力电池的能量密度,从而增加续航里程;而另一种则更加专注于改善动力电池的充电性能,以缩短电动汽车的充电时间。 对于国内电动汽车的发展现状而言,充电桩的布局大多集中在市区当中,大多数消费者选择电动汽车主要也是作为上下班的代步工具,因此可能更多的电动车消费者对于充电速度有着更高的期待,而续航里程基本能够满足使用需求。那么,当下影响动力电池充电速度的因素有哪些?又有没有哪些黑科技能够让动力电池具备极快的充电速度呢? 影响动力电池充电速度的因素有哪些? 1.由动力电池本身使用的电极材料决定: 要说影响动力电池充电速度的因素,动力电池本身所使用的材料起到了至关重要的作用。充电时,锂离子需要加速瞬时嵌入到负极,这对动力电池负极快速接收锂离子的能力有着很大的挑战。因此,若要想提高动力电池的充电速度,其电池电极材料的应用成为了关键。动力电池具备更高的充电速率,就意味着电极材质较为活跃,日常使用当中、特别是充电过程当中可能会带来更多的不稳定性以及更大的发热量。因此,通过改善电极材质达到提升充电速率的方式,会导致动力电池成本的直线上升。 2.由充电桩充电功率决定: 既然充电是一个充电桩与电动汽车交互的行为,那么充电桩也会影响充电速度的快慢。因不同运营商的充电桩,能够输出的充电功率也不同。在动力电池能够兼容的情况下,更高的充电功率能够直接影响充电速度。例如保时捷在近期发布的800V超快速充电技术,其能够在20分钟的充电时间下获得400公里的续航里程,而其充电速度快的主要原因,就是在于其采用了相比目前快速充电系统高出一倍的充电功率。但更高功率的充电桩将会在短时间内消耗大量电网资源,大面积的应用也会对电网造成巨大负荷。 3.由动力电池温度决定: 动力电池的充电、放电,实质上是一种可逆的化学反应,而化学反应在不同的环境温度下会呈现出不同的反应速度。动力电池低于理想使用温度时,低温会降低电极的活跃性,导致充电速度降低;而高于动力电池使用温度时,电极会过于活跃产生诸多不稳定的因素,存在一定风险。目前,市面上已经有一部分电动汽车具备动力电池加热及制冷系统,能够在低温或高温环境当中保证稳定的充电速度。 想要实现动力电池快速充电有哪些新的方向? 目前提升动力电池充电速度的主要方向依然在使用新型电极材料上,若仅仅提升充电功率而电池无法获得如此之快的转化速度,也就将前期发展电动汽车产业的宝贵资源,白白浪费在了建设用不了的充电桩当中。那么目前都有哪些新型的电极材料,能够有效提升动力电池的充电速度呢? 1.钛铌氧化物负极材料: 钛铌氧化物是基于钛酸锂的基础上研发而来的,主要优势在于相对于钛酸锂理论容量175mAh/g,钛铌氧化物的理论容量在280mAh/g左右。 去年10月,东芝宣布成功研发新一代车用锂离子电池,有望在2019年商用。该电池正是采用了钛铌氧化物材料,相对目前三元、磷酸铁锂等技术,其实现了颠覆性进步。新电池具备能量密度高、充电效率快等优点,只需充电6分钟就能达到90%的电量,可行驶320公里。目前锂电池平均需30分钟才能充至80%电量。 2.石墨烯负极材料: 石墨烯在锂电池的应用中,主要做负极活性材料和导电添加剂,可以大幅改善导电情况,降低内阻,提升放电及充电速率,容量更高。近期,三星发布了一则报告称,目前已研发出了基于石墨烯材料的新电池技术,基于石墨烯材质所造的电池将会比目前市面上的普通电池高出45%的容量,能够在提高容量的同时拥有比标准充电速度快5倍的充电速度。 但目前的科技水平,在石墨烯的提取过程中仍然存在着很多难题,并无法实现量产,提炼的过程当中也可能带来很大的环境污染问题。因此,石墨烯动力电池若要实现应用还有很长的路要走。以上就是电动汽车提高电量的方法,希望能给大家帮助。

    时间:2020-04-04 关键词: 电池 电动汽车 充电速度

  • 锂电池的深入了解

    锂电池的深入了解

    什么是锂金属电池?它有什么用途?锂金属电池通过金属锂的腐蚀或叫氧化来产生电能的,用完就废了,不能充电,因此也称一次电池。锂离子电池则是利用锂离子的浓度差进行储能和放电,电池中不存在金属锂,因此也称锂二次电池。目前所应用于手机、相机、电动工具、电动汽车、储能、通信基站等可充锂电池,均为锂离子电池。一般市场上大多数常用可见的锂电池均为锂离子电池,大家也习惯简称为锂电池,本文所称锂电池也主要指锂离子电池。 一、锂电池分类 1、市场上习惯用的两种分类方式:按极片材料分类和按产品外观分类。 A、按极片材料分类 正极材料:磷酸铁锂电池(LFP)、钴酸锂电池(LCO)、锰酸锂电池(LMO)、(二元电池:镍锰酸锂/镍钴酸锂)、(三元:镍钴锰酸锂电池(NCM)、镍钴铝酸锂电池(NCA)) 负极材料:钛酸锂电池(LTO)、石墨烯电池、纳米碳纤维电池 关于市场上的石墨烯概念,主要是指石墨烯基电池,即在极片中加入石墨烯浆料,或在隔膜上加入石墨烯涂层。镍酸锂、镁基电池市场上基本不存在。 B、按产品外观分类 分为:圆柱、软包、方形。 圆柱和方形外包装多为钢壳或者铝壳。软包外包装为铝塑膜,其实软包也是一种方形,市场上习惯将铝塑膜包装的称为软包,也有人将软包电池称为聚合物电池。 对于圆柱形锂离子电池,其型号一般为5位数字。前两位数字为电池的直径,中间两位数字为电池的高度。单位为毫米。例如18650锂电池,它的直径为18毫米,高度为65毫米。 C、按电解质材料的不同 锂离子电池分为液态锂离子电池(LIB)和聚合物锂离子电池(PLB)。 液态锂离子电池使用液体电解质(目前动力用电池多为此种)。聚合物锂离子电池则以固体聚合物电解质来代替,这种聚合物可以是“干态”的,也可以是“胶态”的,目前大部分采用聚合物凝胶电解质。关于固态电池,严格意义上的是指电极和电解质均为固态的。 D、按电池实用性能分类 功率型电池和能量型电池。能量型电池以高能量密度为特点,主要用于高能量输出;功率型电池以高功率密度为特点,主要用于瞬间高功率输出、输出的电池。而功率能量型锂电池是伴随着插电式混合动力车的出现而出现的。它要求电池储存的能量较高,可以支持一段距离的纯电行驶,也要具备较好的功率特性,在低电量的时候进入混合动力模式。 简单理解,能量型类似于马拉松选手,要有耐力,就是要求高容量,对大电流放电性能要求不高;那么功率型就是短跑选手,拼的是暴发力,但耐力也要有,不然容量太小就跑不远。 二、锂电池材料构成 四大主材:正极材料、负极材料、隔膜、电解液 辅材:NMP、铜箔、铝箔、铝壳盖板、导电剂、粘结剂、其他(EMD)等。 三、制作工艺 锂电池的制造流程可分为电极制片、电芯装配、激活检测和电池组装四个主要工序。其中,电极制片又包括正极片和负极片制作,主要环节包括配料、搅拌、涂布、辊压、分切和极耳等步骤。 四、生产所需设备 按照锂离子电池的生产流程,锂电设备主要可以分为前端设备、中端设备和后端设备。 前端设备主要是针对电极制片工序,包括真空搅拌机、涂布机、辊压机和分切机等。涂布工艺要求将搅拌后的浆料均匀地涂在金属上,厚度精确到3μm以下,分切要需要保证切片表面不能存在任何毛刺,否则会对后续工艺产生很大影响。因此,前端设备是电池制造的核心设备,关乎整条生产线的质量。 中端设备主要覆盖电芯装配工序,主要包括卷绕机或叠片机、电芯入壳机、注液机以及封口焊接等设备。 后端设备主要覆盖电芯激活化成、分容检测以及组装成电池组等工艺。相对而言,中后端设备如入壳、封口、检测等机器相对简单,技术要求不高。 五、锂电池应用 主要分为三大块:数码类、动力类、储能类。 数码类:手机、平板、笔记本电脑、电动玩具、MP3/MP4、耳机、充电宝、航模、移动电源等。 动力类:主要指电动交通工具,电动自行车、新能源汽车等。 储能类:主要应用于基站电源、清洁能源储能、电网电力储能、家庭光储系统等。 相信将来锂电池会有更广泛的应用,以上就是锂金属电池的应用,希望能给大家帮助。

    时间:2020-04-04 关键词: 锂电池 锂离子电池 金属锂

  • 铅酸蓄电池和锂电池解析

    铅酸蓄电池和锂电池解析

    铅酸蓄电池还是锂电池,有什么区别呢?随着电动车电池技术的更新,受限于锂电池的性能、性价比等原因想要取代取代传统铅酸电池大哥的地位还有很长一段路要走。我们一起看看到底谁更有利用价值?谁有更多的发展空间? 电动自行车一般用的电池有3种,铅蓄电池、镍氢电池、锂离子电池。锂电池电动自行车很轻巧,用电时间长,和铅蓄电池相比有哪些优缺点呢? 1、一台电动车的一半价格在电池上,锂电池比铅酸蓄电池价格高许多,锂电动车也就贵了许多。 2、质量上也就是续航力时间长,能够比铅酸电池跑的远。 3、使用过程中一定要注意防水,比铅酸电池难伺候。锂电池正极的二氧化锰,只沾一小滴水便可出现发热现象。锂电池中的氯化亚硫与水接触后,在生成盐酸和二氧化硫的同时释放热能,几种因素使锂电池成为生活中的“火种”,在使用锂电池时一定要注意防水、防潮湿。 4、我个人认为现在虽然已经有锂电车在卖,但销量不是很理想,不被大众所认同。从环保角度讲,锂电池比铅酸的环保。 5、铅酸电池现在可以修复,包括仪器加上手工维修,锂电池我不知道能不能维修。 电动车铅酸蓄电池和锂电池哪个好?相比而言铅酸蓄电池技术成熟,且75%原料可循环使用,因此价格相对便宜,更适合电动自行车消费者的购买能力。尽管未来锂离子电池的比例将会有所增加,但铅酸蓄电池仍将在电动自行车动力电池方面占主导地位,锂电池要想取代铅蓄电池的主导地位,还需要走很长的路。以上就是铅酸蓄电池和锂电池的对比解析,希望能给大家参考。

    时间:2020-04-04 关键词: 锂电池 铅酸蓄电池 电动车

  • 什么是高倍率电池?

    什么是高倍率电池?

    什么是高倍率电池?它有什么用途?电池?蓄电池,锂电池,电动汽车,大家多少都能懂点,但是高倍率电池,你们知道吗?开始我们的主题,了解并清楚高倍率电池的相关知识。 高倍率电池一般指的是锂电池,锂离子电池是一种充电高倍率电池,它主要依赖锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间来回嵌入和脱嵌:充电池时,Li+从正极脱嵌,经由电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高机能电池的代表。 锂电池分为高倍率电池和锂离子电池。目前手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为高倍率电池,而真正的高倍率电池因为危险性大,很少应用于日常电子产品。锂离子电池能量密度大,均匀输出电压高。自放电小,好的电池,每月在2%以下(可恢复)。没有记忆效应。工作温度范围宽为-20℃~60℃。轮回机能优胜、可快速充放电、充电效率高达100%,而且输出功率大。使用寿命长。不含有毒有害物质,被称为绿色电池。 充电 是电池重复使用的重要步骤,锂离子电池的充电过程分为两个阶段:恒流快充阶段和恒压电流递减阶段。恒流快充阶段,电池电压逐步升高到电池的尺度电压,随后在控制芯片下转入恒压阶段,电压不再升高以确保不会过充,电流则跟着电池电量的上升逐步减弱到设定的值,而终极完成充电。电量统计芯片通过记实放电曲线可以抽样计算出电池的电量。锂离子电池在多次使用后,放电曲线会发生改变,锂离子电池固然不存在记忆效应,但是充、放电不当会严峻影响电池机能。 留意事项 锂离子电池过度充放电会对正负极造成永久性损坏。过度放电导致负极碳片层结构泛起塌陷,而塌陷会造成充电过程中锂离子无法插入;过度充电使过多的锂离子嵌入负极碳结构,而造成其中部门锂离子再也无法开释出来。充电量即是充电电流乘以充电时间,在充电控制电压一定的情况下,充电电流越大(充电速度越快),充电电量越小。电池充电速渡过快和终止电压控制点不当,同样会造成电池容量不足,实际是电池的部门电极活性物质没有得到充分反应就休止充电,这种充电不足的现象跟着轮回次数的增加而加剧。 放电 第一次充放电,假如时间能较长(一般3--4小时足够),那么可以使电极尽可能多的达到最高氧化态(充足电),放电(或使用)时则强制放到划定的电压、或直至自动关机,如斯能激活电池使用容量。但在锂离子电池的寻常使用中,不需要如斯操纵,可以随时根据需要充电,充电时既不必要一定布满电为止,也不需要先放电。象首次充放电那样的操纵,只需要每隔3--4个月进行连续的1--2次即可。 对于电动汽车和混合动力车来说,其核心技术在于电池,与其他类型的电池比较,动力锂离子电池虽然具有价格高、安全性能差的缺点,但其具有比能量大、循环寿命长等重要优点,因此具有更广阔的发展前景。动力锂离子电池的技术发展也日新月异,从容量及结构上都有所改进,有关专家表示,无论电池厂商采用哪种技术路线,都应满足使用安全性高、环境温差范围广、充放电功能性强、倍率放电使用性好等条件。 电池容量大小涉及技术和成本锂离子电池按体积大小可分为小电池和大电池两种,小电池通常应用于3C电子产品,相关技术及产业已经发展得十分成熟,总体利润呈降低趋势。目前的锂离子电池产品,85%以上是小电池。 大电池又俗称动力电池,同样有小型动力电池和大型动力电池两种,前者主要用于电动工具、电动自行车等,后者用于电动汽车和储能领域。目前,纯电动(EV)、可插电式混合动力(PHEV)、混合动力(HEV)3种类型的动力汽车正处在快速发展时期,备受行业关注。作为未来汽车产业的核心,动力锂离子电池产业的发展受到了空前关注,已被各主要国家上升到了战略高度。深圳市吉阳自动化科技有限公司总裁阳如坤介绍说,小电池无论是在产品利润还是发展规模上都无法与大电池相比,虽然目前动力锂离子电池产业规模还很小,但电动汽车的量产为动力锂离子电池产业带来了重要的发展机会。据行业权威机构的测算,近几年,动力锂离子电池市场将超过全球手机锂离子电池市场的规模,这种改变将引发相关制造设备和厂房新一轮的投资热,同时,新进入动力锂离子电池产业的各大厂商将使相关领域的技术竞争更趋激烈。 目前,究竟采用单体大容量电池技术方案还是采用小容量电池并联技术方案,一直是业内争论的问题,而到底采用哪种技术路线,关键看电池组的结果,要看是否在体积、重量、产品质量、性能、价格、安装的方便性等方面具有竞争力。 锂电池涂碳铝箔 一、材质说明 涂碳铝箔是由导电碳为主的复合型浆料与高纯度的电子铝箔,以转移式涂覆工艺制成。 二、应用范围 细颗粒活性物质的功率型锂电池 正极为磷酸亚铁锂 正极为细颗粒的三元/锰酸锂 用于超级电容器、锂一次电池(锂亚、锂锰、锂铁、扣式等)替代蚀刻铝箔 三、对电池/电容的性能作用 抑制电池极化,减少热效应,提高倍率性能; 降低电池内阻,并明显降低了循环过程的动态内阻增幅; 提高一致性,增加电池的循环寿命; 提高活性物质与集流体的粘附力,降低极片制造成本; 保护集流体不被电解液腐蚀; 提高磷酸铁锂电池的高、低温性能,改善磷酸铁锂、钛酸锂材料的加工性能。 四、建议参数 对应涂覆的活性物质D50最好不大于4~5μm,压实密度不大于2.25g/cm,比表面积在13~18㎡/g范围内。 五、使用中的注意事项 1.存储要求:在温度为25±5℃、湿度为不超过50%的环境中,运输时须避免空气和水蒸气对铝箔的侵蚀; 2.本产品分为A、B两款,各自的关键特性为:A款外观为黑色,常规涂层厚度为双面4~8μm,导电性能较更为突出;B款外观为淡灰色,常规涂层厚度为双面2~3μm,涂层区可做较少层的焊接,并可以涂布机识别跳间隙; 3.B款(灰色)涂碳铝箔可以在涂层区直接做超声焊,只适合卷绕式电池焊接极耳(极片最多2-3层),但超声的功率、时间需做一些微调; 4.碳层的散热性要比铝箔差些,故做涂布时需对带速与烘烤温度适当微调; 5.本产品对锂电池与电容的综合性能有较可观的提升,但不可作为改变电池某方面性能的主要因素,如电池能量密度、高低温性能、高电压等等。以上就是高倍率电池的相关解析,希望能给大家帮助。

    时间:2020-04-04 关键词: 锂电池 蓄电池 高倍率电池

  • 聚合物电池和锂电池对比

    聚合物电池和锂电池对比

    什么是聚合物电池和锂电池?他们有什么区别?这个聚合物电池和锂电池,他们到底谁更有发展趋势,以及他们各自有着什么优势和劣势,我们进行PK,条理清晰,即将揭开谜团。 锂电池的概念使用非常频繁,稍加留意,我们会发现用这个概念其实是有广义、较狭义和狭义三种区别的。广义的锂电池包括锂原电池和锂离子电池;由于锂离子电池比锂原电池应用更广,所以锂电池在较狭义上通常是指锂离子电池;在锂离子电池内部又有两种分类:聚合物锂离子电池和液态锂离子电池,因为质量更大、应用更多的是液态锂离子电池,所以锂电池的狭义理解就是指液态锂离子电池,而聚合物锂离子电池又叫锂聚合物电池,人们习惯上简称为聚合物电池。如果在广义和较狭义的意思上比较锂聚合物电池和锂电池的区别,那么,唯一的就是种概念和属概念的关系,锂聚合物电池被包含于锂电池。因此,具有比较意义的就是狭义层面上的比较:即聚合物电池和液态锂离子电池的比较,基于此,以下用锂电池代指液态锂离子电池。 1、根本区别是原材料 这是二者各种不同表现的总根源。聚合物电池是指在正极、负极或电解质三大组件中至少有一项使用高分子材料。高分子的意思是分子量大,与其相对应的概念是小分子,高分子具有高强度、高韧性和高弹性。目前研发的聚合物电池高分子材料主要用于正极与电解质。 ①聚合物电池正极材料除了采用锂电池的无机化合物,还可以采用导电高分子聚合物; ②、聚合物电池的电解质有高分子电解质(固态或胶态)和有机电解液,锂电池使用电解液(液体或胶体) 2、塑形区别 聚合物电池可以做到薄形化、任意面积化和任意形状化,原因在于其电解质可固态可胶态而非液态,锂电池则采用电解液,需要一个坚固的外壳作为二次包装容纳电解液。因此,这也使得锂电池增加了一部分重量。 3、安全性方面 当前的聚合物多是软包电池,采用铝塑膜做外壳,当内部采用有机电解质时,即使液体很热也不爆炸,因为铝塑膜聚合物电池采用固态或胶态而无漏液,只是自然破裂。但是任何事情都不是绝对的,如果瞬间电流足够大,发生短路,则电池自燃或爆裂并非不可能,手机和平板电脑安全事故的发生多由这种情况引起。 4、电芯电压 由于聚合物电池采用高分子材料,可在电芯里做成多层组合达到高电压,而锂电池电芯标称容量是3.6V,要想在实际运用中达到高电压,则需要将多个电芯串联在一起才能形成理想的高电压工作平台。如果用以上几个特点对比聚合物电池和锂电池哪个好,那么结论就是一定的,然而,在市场上还是锂电池的应用占主体地位,这说明锂电池也有相对优势,我们继续比较下去。 5、导电性 聚合物电池的固态电解质离子电导率低,目前主要是加入了一些添加剂使其成为凝胶电解质,以改善电导率。这也只是增加了离子电导,不似锂电池的电导率保持一个稳定的值,而不会受辅助材料质量的影响。 6、容量 聚合物电池的容量并无有效提升,与标准容量的锂电池相比还有所减少。 7、制造工艺 聚合物电池越薄越好生产,锂电池越厚越好生产,这使得锂电池在应用上可拓展领域更多。 8、价格 这是决定二者市场容量的关键因素,目前,市场上聚合物电池价格普遍高于锂电池,这影响到二者的市场容量,前者与后者之比是1:9。聚合物电池在小型应用上多些,而锂电池在大型应用上更有前途,如果聚合物电池能够突破价格和设计的局限性,或许代表了电池发展趋势,因其环保和安全性更符合潮流。以上就是聚合物电池和锂电池的对比解析,希望能给大家参考。

    时间:2020-04-04 关键词: 锂电池 电解质 有机电解液

  • 充电宝的正确理解

    充电宝的正确理解

    充电宝大家都知道,但是你们真的了解它吗?充电宝也是大家所说的移动电源,也是为了旅行出差不方便充电的人群所设计的。那么关于充电宝的一些特性以及工作原理你们真的能清楚的说出来吗?我们一起涨知识~ 行动电源、行动充电器是一种个人可随身携带,自身能储备电能,主要为手持式移动设备等消费电子产品(例如无线电话、笔记本电脑)充电的便携充电器,特别应用在没有外部电源供应的场合。其主要组成部分包括:用作电能存储的电池,稳定输出电压的电路(直流-直流转换器),绝大部分的行动电源带有充电器,用作为内置电池充电。 行动电源的出现原是为消费性电子产品在没有外部电源供应的场合充电,但由于其输出接口为通用性极高的USB接口,使其也被应用作为其他以USB接口作电源输入端的设备或设备供电,例如USBLED灯、USB电风扇等。 工作原理 行动电源的原理简单,在能找到外部电源供应的场合预先为内置的电池充电,即输入电能,并以化学能形式预先存储起来,当需要时,即由电池提供能量及产生电能,以电压转换器(直流-直流转换器)达至所需电压,由输出端子(一般是USB接口)输出供给所需设备提供电源作充电或其他用途。 基本组成 行动电源有三个基本功能,包括能量存储、充电及供电。随不同设计、用途及操作便利的需要而加有其他功能,例如安全保护、电池状态检测及显示…等。 储能(电池) 为了在没有外部电源的情况下为其他设备供电,行动电源需要有电池作能量存储。大部分的行动电源使用的电池为锂离子电池(Li-ion)或锂离子聚合物电池(Li-PO),有少部分的行动电源使用镍氢电池(Ni-MH),早期也有些行动电源使用一次电池。 锂离子电池(Li-ion)或锂离子聚合物电池(Li-PO)是当中不论是以重量计或以体积计,能量密度都是最高的,也即最轻及最细。此外,锂离子/离子聚合物电池在充电及放电过程中的效率也较高(浪费掉的能量/电较少)。但价格也是这些电池中最高,而且因为过充或过放也很容易使电池永久损坏,所以需要有较精密的电子线路控制充放电。由于锂离子/离子聚合物电池会在高温下会自燃,安全及稳定性成了极重要的要求,需要有可靠的安全保护电路防止任何导致超温的情况出现。 锂离子电池有硬的外壳,锂离子聚合物电池则没有,所以锂离子电池理论上会轻微略重,而锂离子聚合物电池由于没有硬壳,便于制成特定尺寸以配合外观,但锂离子聚合物电池在充满电后体积会略为膨胀变大,需要在设计时预留空间,免得电池内压力过大而造成危险。以上就是充电宝的相关技术解析,希望能给大家帮助。

    时间:2020-04-04 关键词: 直流-直流转换器 便携充电器 行动充电器

发布文章